Skip to main content

Open Access 05.03.2024 | Original Article

Covering-based \((\alpha , \beta )\)-multi-granulation bipolar fuzzy rough set model under bipolar fuzzy preference relation with decision-making applications

verfasst von: Rizwan Gul, Muhammad Shabir, Ahmad N. Al-Kenani

Erschienen in: Complex & Intelligent Systems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rough set (RS) and multi-granulation rough set (MGRS) theories have been successfully extended to accommodate preference analysis by substituting the equivalence relation (ER) with the dominance relation (DR). On the other hand, bipolarity refers to the explicit handling of positive and negative aspects of data. In this paper, with the help of bipolar fuzzy preference relation (BFPR) and bipolar fuzzy preference \(\delta \)-covering (BFP\(\delta \)C), we put forward the idea of BFP\(\delta \)C based optimistic multi-granulation bipolar fuzzy rough set (BFP\(\delta \)C-OMG-BFRS) model and BFP\(\delta \)C based pessimistic multi-granulation bipolar fuzzy rough set (BFP\(\delta \)C-PMG-BFRS) model. We examine several significant structural properties of BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models in detail. Moreover, we discuss the relationship between BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models. Eventually, we apply the BFP\(\delta \)C-OMG-BFRS model for solving multi-criteria decision-making (MCDM). Furthermore, we demonstrate the effectiveness and feasibility of our designed approach by solving a numerical example. We further conduct a detailed comparison with certain existing methods. Last but not least, theoretical studies and practical examples reveals that our suggested approach dramatically enriches the MGRS theory and offers a novel strategy for knowledge discovery, which is practical in real-world circumstances.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The real world is full of uncertainty and indeterminacy. We frequently deal with problems that are vague rather than precise. Because of many kinds of uncertainties in these problems, classical techniques are not always effective. In 1965, Zadeh [68] pioneered the idea of the fuzzy set (FS), which opened the doors for researchers to capture the imprecision of the data. FS theory uses the fuzzy membership function (MF), through which we can determine the membership degree (MD) of an item with respect to a set. The higher the MD, the greater the belongingness of that object to the corresponding set. There are many generalizations of the FS including vague set, neutrosophic FS, intuitionistic FS, Pythagorean FS, interval-valued FS etc.
RS theory [41, 42], proposed by Pawlak, has been recognized as an effective mathematical tool for dealing with intelligent systems characterized by uncertainty and imprecision. This comparatively new soft computing tool has attracted extensive interest in recent years, and its effectiveness has been successfully confirmed and applied in many domains, such as pattern recognition, conflict analysis, knowledge discovery, data mining, image processing, medical diagnosis, neural networks, and so on. The key notion in RS theory is equivalence relation (ER), which describes the indiscernibility relation between arbitrary objects. Although RS theory has been applied successfully in multiple disciplines, certain shortcomings may cause to limit the application domain of the RS theory. These shortcomings could be the result of inaccurate information regarding the objects under consideration. Sometimes in incomplete information, such as an ER, is difficult to find. Therefore, under different conditions, the RS model has accomplished several interesting and meaningful generalizations in recent years, which include the RS model based on tolerance relations [52], RS based on neighborhood operators [66], fuzzy RS (FRS) model [7], rough FS (RFS) model [6], dominance-based RSs [11, 12, 17], fuzzy dominance-based RSs [9, 10], dominance-based neighborhood RS [5], variable precision RS [75], Bayesian RS [53], covering-based RSs [69] and grey tolerance RS model [19, 20].
It is worth noting that every matter has two sides, and bipolarity, as well as fuzziness, is an intrinsic aspect of human cognition. Bipolar reasoning is important in human cognitive processes, according to research in cognitive psychology. Positive and negative effects do not appear to be processed in the same part of the brain. Experts in different domains, such as database querying, DM, and classification, have noticed importance of bipolarity.
Fuzziness and bipolarity are two independent but complementary notions devised to model different aspects of human thinking. The former focuses on linguistic imprecision, while the latter emphasizes the relevance and polarity of data. Two notions have gradually shown high relevance in recent research. Under this background, in 1994, Zhang [72] postulated bipolar FSs (BFSs) as an extension of FSs. According to BFS theory, the MD is enlarged from [0, 1] to \([-1, 1]\). The MD “0” of an object illustrates that the element is irrelevant to the related property, the MD in (0, 1] of an object indicates that the object somewhat satisfies the property, and the MD in of an object \([-1, 0)\) means that the object somewhat fulfills the implicit counter-property. BFS theory has been extensively used to address real-life problems. Many efforts have also been made to hybridize RS theory and BFS theory (see [18, 64, 65]). Gul [14] proposed some bipolar fuzzy aggregation operators and then used them to model a multiple attribute DM (MADM) problem. Later, in the same environment, Wei et al. [57] developed bipolar fuzzy Hamacher aggregation operators in MADM. Wei et al. [56] initiated a multiple attribute DM approach using interval-valued bipolar fuzzy information. Gul and Shabir [15] introduced a new idea of the roughness of a crisp set based on \((\alpha , \beta )\)-indiscernibility of a bipolar fuzzy relation. Ali et al. [3] proposed attribute reductions of bipolar fuzzy relation decision systems. Jun and Park [24], Jun et al. [25], and Lee [30] applied BFSs to BCK/BCI-algebras. Kim et al. [27] found some properties of bases, neighborhoods, and continuities in bipolar fuzzy topological spaces. Malik and Shabir [36] developed a consensus model based on rough bipolar fuzzy approximations.
Pawlak’s RS and most of its extensions depend on on a single relation on a specific universe, which are referred to as single granulation RS models in the context of granular computing. There are certain drawbacks to the single granulation RS in some real-world applications, such as knowledge discovery from data with high dimensions, multi-source data analysis, and distributive information systems [43]. In granular computing, granulating a complex problem into many finer sub-problems can effectively tackle the complexity at a certain level. One vital issue in solving a complicated problem in granular computing is constructing multi-granulation spaces. Constructing multiple granular spaces mainly concentrates on multiple binary relations. To overcome such problems, Qian et al. [45] proposed an MGRS model in 2010 for the first time, in which the set approximations of a target concept are constructed by multiple ERs on a universe under related complex issues. Compared with Pawlak’s RS, MGRS holds dominant position for rule extraction and knowledge discovery (particularly when there is a conflict or inconsistent link between two attribute sets in an information system). In terms of granular computing, the MGRS theory offers a distinctive perspective. It has gained popularity in artificial intelligence and management science and has sparked a wide range of theoretical and practical studies.

A brief review on MGRS

To date, the MGRS theory has progressed rapidly and has drawn a wide variety of research from both theoretical and applied perspectives. For instance, in Qian et al.’s [45] MGRS theory, there are two fundamental models: one is the optimistic MGRS, the other is the pessimistic MGRS [43]. Xu et al. [59] offered two new types of MGRS. Yang et al. [63] came up with the hierarchical structural properties of MGRSs. She and He [50] explored the topological structures of MGRSs. By following Qian et al.’s approach, Yang et al. [62] extended MGRSs into fuzzy environment and initiated the multi-granulation FRSs (MGFRSs). Sun et al. [54] offered a MGFRS model over two universes with application to DM. She et al. [51] introduced a multiple-valued logic approach for MGRS. Kong et al. [28] put forth attribute reducts of multi-granulation information system. Liu et al. [35] studied multi-granulation FRSs based on fuzzy preference relations with applications.
Zhan and Xu [70] projected two different kinds of coverings based on multi-granulation RFSs. Zhan et al. [71] developed the idea of covering based multi-granulation FRSs and their corresponding applications. Lin et al. [33] pioneered a neighborhood-based MGRS model. Xu et al. [60] proposed the idea of generalized MGRSs. Sun et al. [55] initiated multi-granulation vague RS over two universes with application to DM. Qian et al. [46] established three kinds of multi-granulation decision-theoretic RS models. Feng and Mi [8] studied variable precision multi-granulation fuzzy decision-theoretic RSs in an information system. Li et al. [31] proposed a double-quantitative multi-granulation decision-theoretic RFS model. Zhang et al. [73] developed four types of constructive methods of rough approximation operators from existing RSs and offered the non-dual MGRs and hybrid MGRs. Lin et al. [34] designed a two-grade fusion approach involved in the evidence theory and MGRS theory based on a well-defined distance function among granulation structures and developed three types of covering-based MGRSs. Pan et al. [40] suggested a multi-granulation preference relation RS model for the ordinal system. Mandal and Ranadive [38] offered fuzzy multi-granulation decision-theoretic RSs based on fuzzy preference relation. Zhang et al. [74] developed multi-granulation hesitant FRSs along with DM application. Huang et al. [22] developed an intuitionistic fuzzy MGRS (IFMGRS) and three types of IFMGRSs that are generalizations of three existing intuitionistic FRS models. Liang et al. [32] offered an efficient rough feature selection algorithm for large-scale data sets based on the idea from MGRSs. Ali et al. [2] proposed new types of dominance-based MGRSs with applications in conflict analysis. Hu et al. [21] pioneered dynamic dominance-based MGRSs approaches with evolving ordered data. You et al. [67] studied the relative reduction of neighborhood-covering pessimistic MGRS using evidence theory. Xue et al. [61] established three-way decisions based on multi-granulation support intuitionistic fuzzy probabilistic RSs. Qian et al. [47] introduced multi-granulation sequential three-way decisions based on multiple thresholds. Mandal and Ranadive [37] introduced multi-granulation bipolar-valued fuzzy probabilistic RSs and their corresponding three-way decisions over two universes. Recently, Gul and Shabir [16] projected the concept of \((\alpha , \beta )\)-multi-granulation bipolar fuzzified RS using a finite collection of bipolar fuzzy tolerance relations and discuss its applications to DM. Kang et al. [26] initiated a grey MGRSs model.

Research gap and motivations of this study

Based on the above contents, the research gaps and motivations of this article are summarized as follows:
  • Preference relation (PR) is a powerful tool to model DM problems, where decision-makers articulate their preference information over alternatives through pairwise comparisons. With various representations of preference information, numerous kinds of PRs have been put forth and investigated, such as the multiplicative PR [48], fuzzy PR (FPR) [4, 39], and BFPRs [17]. Meanwhile, RS theory has drawn great attention in recent decades, among which MGRS is an arresting perspective. It constructs a formal theoretical framework to solve complicated problems in the context of multiple binary relations. However, according to the best of our knowledge, there does not exist any study where the hybridization of MGRS theory and BFPRs have been discussed for acquiring knowledge. Therefore, this article fills this research gap by introducing the ideas of BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models.
  • BFS is a critical mathematical tool to cope with inconsistent and imprecise data that contain both positive and negative sides in real-life dilemmas. Fuzzy \(\beta \)-covering RS set models are incompetent to capture the bipolarity in the data. Inspiration from the studies, as mentioned earlier, shows that there does not exist any investigation on the appropriate fusion of fuzzy covering with BFRSs under MGRS environment. Consequently, its potential applications to MCDM with bipolar information are also missing. This research gap motivates the current research on the bipolar fuzzy preference covering-based BFRS model under MGRS environment and its applicability to DM.

Aim and contributions of this study

In a nutshell, to extend the theory of MGRS, the main aim of this work is to develop a novel framework of MGRS by incorporating BFPR.
The main contributions of this script is as follows:
(1)
By combining the MGRS theory and BFSs with BFPRs, the idea of BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models are introduced.
 
(2)
Some axiomatic systems of BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models are carefully analyzed.
 
(3)
A connection among the BFP\(\delta \)C-BFRS, BFP\(\delta \)C-OMG-BFRS, and BFP\(\delta \)C-PMG-BFRS has been established.
 
(4)
A comprehensive MCDM technique in the framework of the BFP\(\delta \)C-OMG-BFRS model is introduced, and a practical example also validates the practicality of this technique.
 
(5)
To demonstrate the advantages of the suggested strategy, a detailed comparison with other existing methods is conducted.
 

The structure of this paper

The outline of this article is as follows. To facilitate our discussions, we present some basic concepts RSs, MGRSs, FSs, BFSs, and BFRs in “Preliminaries” section. “BFP\(\delta \)C-OMG-BFRS model” section, the idea of the BFP\(\delta \)C-OMG-BFRS model is introduced. “BFP\(\delta \)C-PMG-BFRS model” section, we offer the concept of the BFP\(\delta \)C-PMG-BFRS model. “Relationship among the BFP\(\delta \)C-BFRS, BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS” section establishes the relationship amongst BFPdC-BFRS, BFPdC-OMG-BFRS, and BFP\(\delta \)C-PMG-BFRS models. In “An application of MCDM methods by BFP\(\delta \)C-OMG-BFRS model” section, a novel MCDM approach is established using the theory of the BFP\(\delta \)C-OMG-BFRS model. “Comparative analysis” section focuses on the comparison of different methods with our designed approach. Finally, “Conclusion and future work” section is devoted to conclusions and future directions.

Preliminaries

Some fundamental notions related to RS, MGRS, FS, BFS, and BFRSs are mentioned in this section.

RS theory

In the RS theory [41], ER assumes a vital role to deal with uncertainty. The ER divides the universe into classes, which are commonly referred to as information granules. Hence, in RS theory, we need to deal with bunches of objects instead of a single entity.
Definition 2.1
[41] An approximation space (AS) is an object of the form \((\mho , \vartheta )\), where \(\mho \) is a non-void finite universe and \(\vartheta \) is an ER on \(\mho \). Given any subset \({\mathcal {T}}\) of \(\mho \), \({\mathcal {T}}\) may or may not be expressed as a union of some equivalence classes induced by \(\vartheta \). If it is possible to express \({\mathcal {T}}\) as the later, then it is called definable, if not it is a RS. If \({\mathcal {T}}\) is a RS, then it can be approximated by the following two definable sets:
$$\begin{aligned} \left. \begin{aligned} \underline{{\mathcal {T}}}_\vartheta&= \big \{q \in \mho : [q]_\vartheta \subseteq {\mathcal {T}}\big \}, \\ \overline{{\mathcal {T}}}^\vartheta&= \big \{q \in \mho : [q]_\vartheta \cap {\mathcal {T}} \ne \varnothing \big \},\\ \end{aligned} \right\} \qquad \end{aligned}$$
(1)
which are called lower and upper approximations of \({\mathcal {T}}\), respectively, where
$$\begin{aligned}{}[q]_\vartheta = \big \{r \in \mho : (q, r) \in \vartheta \big \}. \end{aligned}$$
(2)
Moreover, the sets listed below:
$$\begin{aligned} \left. \begin{aligned} {\mathcal {P}}os_\vartheta ({\mathcal {T}})&= \underline{{\mathcal {T}}}_\vartheta , \\ {\mathcal {B}}nd_\vartheta ({\mathcal {T}})&= \overline{{\mathcal {T}}}^\vartheta - \underline{{\mathcal {T}}}_\vartheta ,\\ {\mathcal {N}}eg_\vartheta ({\mathcal {T}})&= \Big ( \overline{{\mathcal {T}}}^\vartheta \Big )^c,\\ \end{aligned} \right\} \qquad \end{aligned}$$
(3)
are called the positive, boundary, and negative regions of \({\mathcal {T}} \subseteq \mho \), respectively. The semantics of these regions are as follows:
  • \(q \in {\mathcal {P}}os_\vartheta ({\mathcal {T}})\) indicates that \({\mathcal {T}}\) certainly contains the element \(q \in \mho \).
  • \(q \in {\mathcal {B}}nd_\vartheta ({\mathcal {T}})\) shows that \({\mathcal {T}}\) may or may not contain the element \(q \in \mho \).
  • \(q \in {\mathcal {N}}eg_\vartheta ({\mathcal {T}})\) reveals that \({\mathcal {T}}\) definitely does not contain the element \(q \in \mho \).
Clearly, \({\mathcal {T}}\) is definable if \(\underline{{\mathcal {T}}}_\vartheta = \overline{{\mathcal {T}}}^\vartheta \); equivalently \({\mathcal {B}}nd_\vartheta ({\mathcal {T}}) = \varnothing \). \({\mathcal {T}}\) is a RS if \(\underline{{\mathcal {T}}}_\vartheta \ne \overline{{\mathcal {T}}}^\vartheta \); equivalently \({\mathcal {B}}nd_\vartheta ({\mathcal {T}}) \ne \varnothing \).
Pawlak’s RS theory is based on a single ER. Using a finite collection of ERs, Qian et al. [45] formulated the idea of the MGRS. In Qian et al.’s MGRS theory, two different approaches have been proposed. The first one is the optimistic MGRS (OMGRS) and the second one is the pessimistic MGRS (PMGRS).

OMGRS model

Each ER can induce a partition in the universe, and such a partition can be regarded as a granulation space. Therefore, a family of ERs can induce a family of granulation spaces. In optimistic multi-granulation lower approximation, the term “optimistic" means that in multi-independent granulation spaces, we need only at least one of the granulation spaces to satisfy the inclusion condition between the equivalence class and the approximated target. The upper approximation of optimistic MGRS is defined by the complement of the optimistic multi-granulation lower approximation.
Definition 2.2
[45] Let \(\Theta =\{ \vartheta _1, \vartheta _2, \ldots , \vartheta _n \}\) a be finite collection of n independent ERs over \(\mho \) and \({\mathcal {T}} \subseteq \mho \). The optimistic multi-granulation lower and upper approximations of \({\mathcal {T}} \subseteq \mho \) are, respectively, defined as
$$\begin{aligned} \left. \begin{aligned} {\underline{\Theta }}_{opt}({\mathcal {T}})&= \big \{q \in \mho : [q]_{\vartheta _i} \subseteq {\mathcal {T}}\ \text {for\ some}\ i=1, 2, \ldots , n \big \},\\ {\overline{\Theta }}^{opt}({\mathcal {T}})&= \big ({\underline{\Theta }}_{opt} ({\mathcal {T}}^c) \big )^c,\\ \end{aligned} \right\} \nonumber \\ \end{aligned}$$
(4)
where \({\mathcal {T}}^c\) is the complement of set \({\mathcal {T}}\). If \({\underline{\Theta }}_{opt}({\mathcal {T}})\ne {\overline{\Theta }}^{opt}({\mathcal {T}})\), then \({\mathcal {T}}\) is referred as an OMGRS, otherwise it is an optimistic definable. The boundary region of \({\mathcal {T}}\subseteq \mho \) under OMGRS environment is defined as
$$\begin{aligned} Bnd_{\Theta }^{opt} ({\mathcal {T}}) = {\overline{\Theta }}^{opt} ({\mathcal {T}}) - {\underline{\Theta }}_{opt} ({\mathcal {T}}). \end{aligned}$$
(5)

PMGRS model

In the PMGRS, the target is still approximated through a family of ERs. However, the pessimistic case is different from the optimistic case. In pessimistic multi-granulation lower approximation, the term “pessimistic" means that we need all of the granulation spaces to satisfy the inclusion condition between the equivalence class and the approximated target. The upper approximation of PMGRS is still defined by the complement of the pessimistic multi-granulation lower approximation.
Definition 2.3
[43] Let \(\Theta = \{\vartheta _1, \vartheta _2, \ldots , \vartheta _n \}\) be a finite collection of n independent ERs over \(\mho \) and \({\mathcal {T}} \subseteq \mho \). The pessimistic multi-granulation lower and upper approximations of \({\mathcal {T}}\subseteq \mho \) are, respectively, defined as
$$\begin{aligned} \left. \begin{aligned} {\underline{\Theta }}_{pes} ({\mathcal {T}})&= \big \{q \in \mho : [q]_{\vartheta _i} \subseteq {\mathcal {T}}\ \text {for\ all}\ i=1, 2, \ldots , n \big \},\\ {\overline{\Theta }}^{pes} ({\mathcal {T}})&= \big ({\underline{\Theta }}_{pes} ({\mathcal {T}}^c) \big )^c.\\ \end{aligned} \right\} \qquad \end{aligned}$$
(6)
If \({\underline{\Theta }}_{pes}({\mathcal {T}})\ne {\overline{\Theta }}^{pes}({\mathcal {T}})\), then \({\mathcal {T}}\) is called a PMGRS, otherwise it is a pessimistic definable. The boundary region of \({\mathcal {T}}\subseteq \mho \) under PMGRS context is characterized as
$$\begin{aligned} Bnd_{\Theta }^{pes} ({\mathcal {T}}) = {\overline{\Theta }}^{pes} ({\mathcal {T}}) - {\underline{\Theta }}_{pes} ({\mathcal {T}}). \end{aligned}$$
(7)
Definition 2.4
[68] A FS \({\tilde{\digamma }}\) on a non-void finite universe \(\mho \) is defined by a function \({\tilde{\digamma }}: \mho \longrightarrow [0, 1]\), where the value \({\tilde{\digamma }}(q)\) signifies the MD of \(q \in \mho \) in \({\tilde{\digamma }}\).
Definition 2.5
[72] A BFS \(\zeta \) over \(\mho \) is a structure of the form:
$$\begin{aligned} \zeta = \big \{ \big \langle q, \zeta ^P (q), \zeta ^N (q)\big \rangle : q \in \mho \big \}, \end{aligned}$$
(8)
where \(\zeta ^P: \mho \longrightarrow [0, 1]\) and \(\zeta ^N: \mho \longrightarrow [-1, 0]\) are called positive MD and negative MD, respectively. The positive MD \(\zeta ^P (q)\) denotes the satisfaction degree of an element q to the property and the negative MD \(\zeta ^N (q)\) denotes the satisfaction degree of q to somewhat implicit counter-property.
Henceforth, we write \({{\mathcal {B}}}{{\mathcal {F}}}(\mho )\) to represent the collection of all BFSs over the universe \(\mho \).
Definition 2.6
[72] Let \(\lambda , \zeta \in \mathcal{B}\mathcal{F}(\mho )\). Then for all \(q\in \mho \), we have
(i)
\(\lambda \subseteq \zeta \Longleftrightarrow \lambda ^P(x)\le \zeta ^P(x)\) and \(\lambda ^N(q)\ge \zeta ^N(q)\);
 
(ii)
\((\lambda \cap \zeta )(q) = \big \{\lambda ^P(q) \wedge \zeta ^P(q), \lambda ^N(q) \vee \zeta ^N(q) \big \}\);
 
(iii)
\((\lambda \cup \zeta )(q) = \big \{\lambda ^P(q) \vee \zeta ^P(q), \lambda ^N(q) \wedge \zeta ^N(q) \big \}\);
 
(iv)
\(\lambda ^c(q) = \big \{1 - \lambda ^P(q), -1 - \lambda ^N(q) \big \}\).
 
Definition 2.7
[29] The whole BFS over \(\mho \) is symbolized by \( {\mathfrak {U}}= \big \langle {\mathfrak {U}}^P, {\mathfrak {U}}^N \big \rangle \) and is defined as \({\mathfrak {U}}^P(x) = 1\) and \({\mathfrak {U}}^N(x)= 0\), for all \(x\in \mho \). The null BFS over \(\mho \) is symbolized by \( \Theta = \big \langle \Theta ^P, \Theta ^N \big \rangle \) and is defined as \(\Theta ^P(x) = 0\) and \(\Theta ^N(x)= -1\), for all \(x\in \mho \).
Definition 2.8
[63] A BFR \({\mathcal {B}}\) over \(\mho \) is a BFS over \(\mathcal {\mho \times \mho }\). Therefore, it can be denoted as
$$\begin{aligned} {\mathcal {B}} = \big \{ \big \langle (q, r), \mu ^P_{{\mathcal {B}}}(q, r), \mu ^N_{{\mathcal {B}}}(q, r) \big \rangle : (q, r)\in \mathcal {\mho \times \mho } \big \}, \end{aligned}$$
(9)
where \(\mu ^P_{{\mathcal {B}}}: \mathcal {\mho \times \mho } \longrightarrow [0, 1]\) and \(\mu ^N_{{\mathcal {B}}}: \mathcal {\mho \times \mho } \longrightarrow [-1, 0]\) are mappings.
For a BFR \({\mathcal {B}}\) over \(\mho \), \(\mu ^P_{{\mathcal {B}}}(q, r)\) is the positive MD which shows the satisfaction degree of an object (qr) to the property corresponding \({\mathcal {B}}\), and its negative MD \(\mu ^N_{{\mathcal {B}}}(q, r)\) represents satisfaction degree to some implicit counter-property associated with \({\mathcal {B}}\).
Definition 2.9
[15] Let \({\mathcal {B}} = \big \langle \mu ^P_{{\mathcal {B}}}(q, r), \mu ^N_{{\mathcal {B}}}(q, r) \big \rangle \) be a BFR over \(\mho = \{x_1, x_2, \ldots , x_n \}\). By taking \(a_{ij} = \mu ^P_{{\mathcal {B}}}(q_i, r_j)\) and \(b_{ij} = \mu ^N_{{\mathcal {B}}}(q_i, r_j)\), \(i = 1, 2,..., n\); \(j = 1, 2,..., n\), the BFR \({\mathcal {B}}\) can be expressed by a pair of matrices given as
$$\begin{aligned} \mu ^P_{{\mathcal {B}}}= & {} \big (a_{ij}\big )_{n \times n}^P = \begin{pmatrix} a_{11} &{}\quad a_{12} &{}\quad \cdots &{}\quad a_{1n}\\ a_{21} &{}\quad a_{22} &{}\quad \cdots &{}\quad a_{2n} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ a_{n1} &{}\quad a_{n2} &{}\quad \cdots &{}\quad a_{nn} \end{pmatrix} and \\ \mu ^N_{{\mathcal {B}}}= & {} \big (b_{ij}\big )_{n \times n}^N = \begin{pmatrix} b_{11} &{}\quad b_{12} &{}\quad \cdots &{}\quad b_{1n} \\ b_{21} &{}\quad b_{22} &{}\quad \cdots &{}\quad b_{2n} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{} \quad \vdots \\ b_{n1} &{}\quad b_{n2} &{}\quad \cdots &{}\quad b_{nn} \end{pmatrix}, \end{aligned}$$
which are named the positive MD matrix and the negative MD matrix, respectively. A BFR \({\mathcal {B}}\) over \(\mho \) can also be represented as
$$\begin{aligned} {\mathcal {B}}= & {} \Big ( \langle \mu ^P_{{\mathcal {B}}}, \mu ^N_{{\mathcal {B}}}\rangle \Big )_{n \times n}\\= & {} \begin{pmatrix} \langle a_{11}, b_{11}\rangle &{}\quad \langle a_{12}, b_{12}\rangle &{}\quad \cdots &{}\quad \langle a_{1n}, b_{1n}\rangle \\ \langle a_{21}, b_{21}\rangle &{}\quad \langle a_{22}, b_{22}\rangle &{}\quad \cdots &{}\quad \langle a_{2n}, b_{2n}\rangle \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \langle a_{n1}, b_{n1}\rangle &{}\quad \langle a_{n2}, b_{n1}\rangle &{}\quad \cdots &{}\quad \langle a_{nn}, b_{nn}\rangle \end{pmatrix}, \end{aligned}$$
where \(a_{ij} \in [0, 1]\) and \(b_{ij} \in [-1, 0]\).
Recently, Gul and Shabir [17] initiated the idea of BFPR which is stated as follows.
Definition 2.10
[17] A BFPR \({\mathfrak {B}}\) is a BFS over \(\mathcal {\mho \times \mho }\), which is described by its positive and negative MFs given as \(\mu ^P_{{\mathfrak {B}}}: \mho \times \mho \longrightarrow [0, 1]\) and \(\mu ^N_{{\mathfrak {B}}}: \mho \times \mho \longrightarrow [-1, 0]\). For \(\mho = \{x_1, x_2, \ldots , x_n \}\), we can express it by an \(n\times n\) matrix as
$$\begin{aligned} {\mathfrak {B}}= & {} \Big ( \langle a_{ij}, b_{ij}\rangle \Big )_{n \times n} \\= & {} \begin{array}{*{20}c} x_1 \\ x_2 \\ \vdots \\ x_n\\ \end{array} \mathop {\left( {\begin{array}{*{20}l} &{} \langle a_{11}, b_{11}\rangle &{} \langle a_{12}, b_{12}\rangle &{} \cdots &{} \langle a_{1n}, b_{1n}\rangle \\ &{} \langle a_{21}, b_{21}\rangle &{} \langle a_{22}, b_{22}\rangle &{} \cdots &{} \langle a_{2n}, b_{2n}\rangle \\ &{} \vdots &{} \ddots &{} \vdots \\ &{} \langle a_{n1}, b_{n1}\rangle &{} \langle a_{n2}, b_{n2}\rangle &{} \cdots &{} \langle a_{nn}, b_{nn}\rangle , \end{array} }\right) } \limits ^{{\begin{array}{*{20}l} x_1 \qquad \qquad &{} x_2 \qquad \qquad &{} \cdots \qquad \qquad &{}x_n \\ \end{array} }} \end{aligned}$$
where \(\langle a_{ij}, b_{ij}\rangle \) denotes the bipolar fuzzy preference degree (BFPD) of alternative \(x_i\) over alternative \(x_j\), \(a_{ij}\in [0, 1]\), \(b_{ij}\in [-1, 0]\). Moreover, \(a_{ij}\) and \(b_{ij}\) satisfy the following conditions, \(a_{ij} + a_{ji} = 1, b_{ij} + b_{ji} = -1, a_{ii} = 0.5\ \text {and}\ b_{ii} = -0.5\ \forall i, j=1, 2, \ldots , n\). Particularly,
  • \(a_{ij}=0.5, b_{ij}= -0.5\) indicates indifference between alternatives \(x_i\) and \(x_j\);
  • \(a_{ij}> 0.5, b_{ij} > - 0.5\) demonstrates that alternative \(x_i\) is better than alternative \(x_j\);
  • \(a_{ij}< 0.5, b_{ij} < - 0.5\) indicates that alternative \(x_j\) is better than alternative \(x_i\);
  • \(a_{ij} = 1, b_{ij} = 0\) shows that alternative \(x_i\) is absolutely better than alternative \(x_j\);
  • \(a_{ij} = 0, b_{ij} = -1\) means alternative \(x_j\) is absolutely better than alternative \(x_i\).
Definition 2.11
[17] A BFPR \({\mathfrak {B}} = \Big ( \langle a_{ij}, b_{ij}\rangle \Big )_{n \times n}\) is said to be an additive consistent, if \(\forall i, j, k\in \{1, 2, \cdots , n\}\) the following conditions hold:
(1)
\(a_{ij} = a_{ik} - a_{jk} + 0.5\),
 
(2)
\(b_{ij} = b_{ik} - b_{jk} + 0.5\).
 
Definition 2.12
[17] Let \(\mho = \{x_i: i=1, 2, \ldots , n\}\) be a non-empty finite universe of n objects and \({\mathfrak {C}} = \{{\mathfrak {C}}_k: k=1, 2, \ldots , m \}\) be a non-empty finite set of m criteria. Let \(f: \mho \times {\mathfrak {C}} \longrightarrow [0, 1]\) be a fuzzy membership function and \(g: \mho \times {\mathfrak {C}} \longrightarrow [-1, 0]\) is a fuzzy non-membership function. Then, we define the transfer functions to compute BFPD of any two objects \(x_i, x_j \in \mho \) about the criterion \({\mathfrak {C}}_k\) as follows:
$$\begin{aligned} a^{{\mathfrak {C}}_k}_{ij}&= \dfrac{f(x_i, {\mathfrak {C}}_k)- f(x_j, {\mathfrak {C}}_k) +1}{2}, \end{aligned}$$
(10)
$$\begin{aligned} b^{{\mathfrak {C}}_k}_{ij}&= \dfrac{g(x_j, {\mathfrak {C}}_k)- g(x_i, {\mathfrak {C}}_k) -1}{2}. \end{aligned}$$
(11)
For a BFPR on the criteria \({\mathfrak {C}}_k\) \({\mathfrak {B}}_{{\mathfrak {C}}_k}(x_i, x_j) = \Big (\!\big \langle a^{{\mathfrak {C}}_k}_{ij}, b^{{\mathfrak {C}}_k}_{ij} \big \rangle \!\Big )_{n \times n}\), the above transfer functions (10) and (11) satisfy the following for the objects \(x_i, x_j, x_k \in \mho \):
(1)
\(a^{{\mathfrak {C}}_k}_{ii} = 0.5\) and \(b^{{\mathfrak {C}}_k}_{ii} = - 0.5\).
 
(2)
\(a^{{\mathfrak {C}}_k}_{ij} + a^{{\mathfrak {C}}_k}_{ji} = 1\) and \(b^{{\mathfrak {C}}_k}_{ij} + b^{{\mathfrak {C}}_k}_{ji} = - 1\).
 
(3)
\(a^{{\mathfrak {C}}_k}_{ij} + a^{{\mathfrak {C}}_k}_{j\ell } = a^{{\mathfrak {C}}_k}_{i\ell } + 0.5\) and \(b^{{\mathfrak {C}}_k}_{ij} + b^{{\mathfrak {C}}_k}_{j\ell } = b^{{\mathfrak {C}}_k}_{i\ell } - 0.5.\)
 
Definition 2.13
[17] The bipolar fuzzy preference class of an object \(x_i \in \mho \) generated by a BFPR \({\mathfrak {B}}_{{\mathfrak {C}}_k}(x_i, x_j) = \Big ( \big \langle a^{{\mathfrak {C}}_k}_{ij}, b^{{\mathfrak {C}}_k}_{ij} \big \rangle \Big )_{n \times n}\) is defined as
$$\begin{aligned}{}[x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}&= \dfrac{\big \langle a^{{\mathfrak {C}}_k}_{i1}, b^{{\mathfrak {C}}_k}_{i1} \big \rangle }{x_1} + \dfrac{\big \langle a^{{\mathfrak {C}}_k}_{i2}, b^{{\mathfrak {C}}_k}_{i2} \big \rangle }{x_2} + \cdots + \dfrac{\big \langle a^{{\mathfrak {C}}_k}_{in}, b^{{\mathfrak {C}}_k}_{in} \big \rangle }{x_n}. \end{aligned}$$
(12)
The BFPR \({\mathfrak {B}}_{{\mathfrak {C}}_k}\) form a family of bipolar fuzzy information granules from the universe, which constitute the bipolar fuzzy preference granular structure given as
$$\begin{aligned} {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big )&= \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}\Big \}. \end{aligned}$$
(13)
In [17], Gul and Shabir adopted the transfer functions (10) and (11) to introduce the notion of BFP\(\delta \)-nhd and BP\(\delta \)-nhd in a BFP\(\delta \)C-approximation space (\(BFP\delta C\)-AS) and relative properties are investigated. Eventually, they built a novel BFP\(\delta \)C-BFRS model using BFP\(\delta \)-nhd.
Definition 2.14
[17] Let \(\mho \) be an arbitrary non-void finite universe and \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big )\) be a bipolar fuzzy preference granular structure. Then for each \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), we call \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big )\) a \(BFP\delta C\) of \(\mho \), if
$$\begin{aligned} \displaystyle {\left( \bigcup _{i,j=1}^n a^{{\mathfrak {C}}_k}_{ij} \right) }(x)\ge & {} \alpha \ \text {and}\ \displaystyle {\left( \bigcap _{i,j=1}^n b^{{\mathfrak {C}}_k}_{ij} \right) }(x) \nonumber \\\le & {} \beta , \ \text {for all}\ x\in \mho . \end{aligned}$$
(14)
Moreover, the pair \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) is said to be a \(BFP\delta C\)-AS.
Definition 2.15
[17] Let \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) be a \(BFP\delta C\)-AS. For each object \(x\in \mho \), we define the BFP\(\delta \)-nghd \(\aleph ^{\delta }_{x}\) of x as follows:
$$\begin{aligned} \aleph ^{\delta }_{x} = \Big \langle \aleph ^{\alpha }_{x}, \aleph ^{\beta }_{x} \Big \rangle , \end{aligned}$$
(15)
where,
$$\begin{aligned} \aleph ^{\alpha }_{x} = \bigwedge \Big \{ [x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}: a^{{\mathfrak {C}}_k}_{ij}\ge \alpha \Big \}, \end{aligned}$$
(16)
and
$$\begin{aligned} \aleph ^{\beta }_{x} = \bigvee \Big \{ [x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}: b^{{\mathfrak {C}}_k}_{ij}\le \beta \Big \}. \end{aligned}$$
(17)
Definition 2.16
[17] Let \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) be a \(BFP\delta C\)-AS and \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\). The \(BFP\delta C\) lower and upper approximations of a BFS \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \) in \(\mho \) with respect to \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) are, respectively, defined as
$$\begin{aligned} \left. \begin{aligned} \underline{{BF}}_{{\mathfrak {C}}} (\lambda )&= \Big \langle \underline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}}, \underline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} \Big \rangle ,\\ \overline{{BF}}_{{\mathfrak {C}}} (\lambda )&= \Big \langle \overline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}}, \overline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}}\Big \rangle ,\\ \end{aligned} \right\} \qquad \end{aligned}$$
(18)
where,
$$\begin{aligned} \left. \begin{aligned} \underline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}}&= \bigwedge _{y\in \mho } \bigg \{ \Big (1-\ ^{{\mathfrak {C}}}\aleph ^{\alpha }_{x}(y)\Big )\vee \lambda ^P(y)\bigg \},\\ \underline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}}&= \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}}\aleph ^{\beta }_{x}(y) \wedge \lambda ^N(y)\bigg \},\\ \overline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}}&= \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}}\aleph ^{\alpha }_{x}(y) \wedge \lambda ^P(y) \bigg \},\\ \overline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}}&= \bigwedge _{y\in \mho } \bigg \{ \Big ( - 1 -\ ^{{\mathfrak {C}}}\aleph ^{\beta }_{x}(y) \Big )\vee \lambda ^N(y) \bigg \},\\&\text {for every }\ x\in \mho . \end{aligned} \right\} \end{aligned}$$
(19)
If \(\underline{{BF}}_{{\mathfrak {C}}} (\lambda ) \ne \overline{{BF}}_{{\mathfrak {C}}} (\lambda )\), then \(\lambda \) is called bipolar fuzzy preference \(\delta \)-covering based bipolar fuzzy rough set; otherwise \(\lambda \) is said to be bipolar fuzzy definable.

BFP\(\delta \)C-OMG-BFRS model

In this section, we propose the idea of BFRS model by means of BFP\(\delta \)-nhd in the context of optimistic multi-granulation environment and investigate some axiomatic systems.
Definition 3.1
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). Assume that \(^{{\mathfrak {C}}_t}\aleph ^{\delta }_{x} = \Big \langle \ ^{{\mathfrak {C}}_t} \aleph ^{\alpha }_{x}, ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x} \Big \rangle \) is a BFP\(\delta \)-nghd of x in \(\mho \) induced by \({\mathfrak {C}}_t, t = 1, 2, \ldots , k\). Then we define the optimistic multi-granulation BFP\(\delta \)C lower and upper approximations of a BFS \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\) in \(\mho \) with respect to \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) as follows:
$$\begin{aligned} \left. \begin{aligned} \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )&= \Big \langle \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\Big \rangle ,\\ \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )&= \Big \langle \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\Big \rangle ,\\ \end{aligned} \right\} \qquad \end{aligned}$$
(20)
where,
$$\begin{aligned} \left. \begin{aligned} \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \lambda ^P(y)\bigg \},\\ \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \lambda ^N(y)\bigg \},\\ \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y) \wedge \lambda ^P(y) \bigg \},\\ \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big ( - 1- ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \Big )\vee \lambda ^N(y) \bigg \}, \\&\text {for every }\ x\in \mho . \end{aligned} \right\} \end{aligned}$$
(21)
If \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \ne \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )\), then \(\lambda \) is called BFP\(\delta \)C-OMG-BFRS; otherwise it is optimistic multi-granulation bipolar fuzzy definable.
Remark 3.2
If \({\mathfrak {C}} = {\mathfrak {C}}_1 = {\mathfrak {C}}_2 = \cdots = {\mathfrak {C}}_t\), then the operators given in Eq. (21) degenerates into a bipolar fuzzy preference \(\delta \)-covering based bipolar fuzzy rough set proposed by Gul and Shabir [17].
Example 3.3
Table 1 depicts a bipolar fuzzy information matrix, where \(\mho = \{x_1, x_2, x_3, x_4, x_5\}\) and \({\mathfrak {C}} = \{{\mathfrak {C}}_1, {\mathfrak {C}}_2\}\).
Table 1
Bipolar fuzzified information matrix
\(\mho / {\mathfrak {C}}\)
\({\mathfrak {C}}_1\)
\({\mathfrak {C}}_2\)
\(x_1\)
(0.5, \(-0.25\))
(0.8, \(-0.7\))
\(x_2\)
(0.2, \(-0.8\))
(0.9, \(-0.4\))
\(x_3\)
(0.33, \(-0.25\))
(0.75, \(-0.4\))
\(x_4\)
(0.65, \(-0.6\))
(0.3, \(-0.75\))
\(x_5\)
(1, \(-0.5\))
(0.4, \(-0.35\))
Based on criteria \({\mathfrak {C}}_1\) and \({\mathfrak {C}}_2\), we can construct the BFPRs of alternative \(x_i\) to the alternative \(x_j (i, j=1, 2, \ldots , 5)\) by using formulas (10) and (11), we obtain:
$$\begin{aligned} {\mathfrak {B}}_{{\mathfrak {C}}_1}(x_i, x_j)&= \begin{pmatrix} \langle 0.500, -0.500\rangle &{} \langle 0.650, -0.775\rangle &{} \langle 0.585, -0.500\rangle &{} \langle 0.425, -0.675\rangle &{} \langle 0.250, -0.625\rangle \\ \langle 0.350, -0.225\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.435, -0.225\rangle &{} \langle 0.275, -0.400\rangle &{} \langle 0.100, -0.350\rangle \\ \langle 0.415, -0.500\rangle &{} \langle 0.565, -0.775\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.340, -0.675\rangle &{} \langle 0.165, -0.625\rangle \\ \langle 0.575, -0.325\rangle &{} \langle 0.725, -0.600\rangle &{} \langle 0.660, -0.325\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.325, -0.450\rangle \\ \langle 0.750, -0.375\rangle &{} \langle 0.900, -0.650\rangle &{} \langle 0.835, -0.375\rangle &{} \langle 0.675, -0.550\rangle &{} \langle 0.500, -0.500\rangle \\ \end{pmatrix}, \end{aligned}$$
(22)
$$\begin{aligned} {\mathfrak {B}}_{{\mathfrak {C}}_2}(x_i, x_j)&= \begin{pmatrix} \langle 0.500, -0.500\rangle &{} \langle 0.450, -0.350\rangle &{} \langle 0.525, -0.350\rangle &{} \langle 0.750, -0.525\rangle &{} \langle 0.700, -0.325\rangle \\ \langle 0.550, -0.650\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.575, -0.500\rangle &{} \langle 0.800, -0.675\rangle &{} \langle 0.750, -0.475\rangle \\ \langle 0.475, -0.650\rangle &{} \langle 0.425, -0.500\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.725, -0.675\rangle &{} \langle 0.675, -0.475\rangle \\ \langle 0.250, -0.475\rangle &{} \langle 0.200, -0.325\rangle &{} \langle 0.275, -0.325\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.450, -0.300\rangle \\ \langle 0.300, -0.675\rangle &{} \langle 0.250, -0.525\rangle &{} \langle 0.325, -0.525\rangle &{} \langle 0.550, -0.700\rangle &{} \langle 0.500, -0.500\rangle \\ \end{pmatrix}. \end{aligned}$$
(23)
The bipolar fuzzy preference classes \([x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\) and \([x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\) for \(i = 1, 2, \ldots , 5\) are given in Tables 2 and 3:
Table 2
Bipolar fuzzy preference classes \([x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
 
\([x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([x_3]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([x_4]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([x_5]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\(x_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.350, -0.225\rangle \)
\(\langle 0.415, -0.500\rangle \)
\(\langle 0.575, -0.325\rangle \)
\(\langle 0.750, -0.375\rangle \)
\(x_2\)
\(\langle 0.650, -0.775\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.565, -0.775\rangle \)
\(\langle 0.725, -0.600\rangle \)
\(\langle 0.900, -0.650\rangle \)
\(x_3\)
\(\langle 0.585, -0.500\rangle \)
\(\langle 0.435, -0.225\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.660, -0.325\rangle \)
\(\langle 0.835, -0.375\rangle \)
\(x_4\)
\(\langle 0.425, -0.675\rangle \)
\(\langle 0.275, -0.400\rangle \)
\(\langle 0.340, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.675, -0.550\rangle \)
\(x_5\)
\(\langle 0.250, -0.625\rangle \)
\(\langle 0.100, -0.350\rangle \)
\(\langle 0.165, -0.625\rangle \)
\(\langle 0.325, -0.450\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 3
Bipolar fuzzy preference classes \([x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
 
\([x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([x_3]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([x_4]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([x_5]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\(x_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.650\rangle \)
\(\langle 0.475, -0.650\rangle \)
\(\langle 0.250, -0.475\rangle \)
\(\langle 0.300, -0.675\rangle \)
\(x_2\)
\(\langle 0.450, -0.350\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.425, -0.500\rangle \)
\(\langle 0.200, -0.325\rangle \)
\(\langle 0.250, -0.525\rangle \)
\(x_3\)
\(\langle 0.525, -0.350\rangle \)
\(\langle 0.575, -0.500\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.275, -0.325\rangle \)
\(\langle 0.325, -0.525\rangle \)
\(x_4\)
\(\langle 0.750, -0.525\rangle \)
\(\langle 0.800, -0.675\rangle \)
\(\langle 0.725, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.700\rangle \)
\(x_5\)
\(\langle 0.700, -0.325\rangle \)
\(\langle 0.750, -0.475\rangle \)
\(\langle 0.675, -0.475\rangle \)
\(\langle 0.450, -0.300\rangle \)
\(\langle 0.500, -0.500\rangle \)
Clearly, we can observe that from Tables 2 and 3\({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) = \Big \{[x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}: i=1, 2, \ldots , 5, k=1, 2\Big \}\) is a \(BFP\delta C\) of \(\mho \) for \(\delta = \langle 0.500, -0.500 \rangle \). Now let \(\alpha = 0.500\) and \(\beta = -0.500\). Then according to Definition 2.15, we have
$$\begin{aligned} ^{{\mathfrak {C}}_1} \aleph ^{\alpha }_{x_1}&= a^{{\mathfrak {C}}_1}_{11} \bigwedge a^{{\mathfrak {C}}_1}_{14} \bigwedge a^{{\mathfrak {C}}_1}_{15},&^{{\mathfrak {C}}_1} \aleph ^{\beta }_{x_1}&= b^{{\mathfrak {C}}_1}_{12} \bigvee b^{{\mathfrak {C}}_1}_{13};\\ ^{{\mathfrak {C}}_1} \aleph ^{\alpha }_{x_2}&= a^{{\mathfrak {C}}_1}_{21} \bigwedge a^{{\mathfrak {C}}_1}_{22} \bigwedge a^{{\mathfrak {C}}_1}_{23} \bigwedge a^{{\mathfrak {C}}_1}_{24} \bigwedge a^{{\mathfrak {C}}_1}_{25},&^{{\mathfrak {C}}_1} \aleph ^{\beta }_{x_2}&= b^{{\mathfrak {C}}_1}_{21} \bigvee b^{{\mathfrak {C}}_1}_{22} \bigvee b^{{\mathfrak {C}}_1}_{23} \bigvee b^{{\mathfrak {C}}_1}_{24} \bigvee b^{{\mathfrak {C}}_1}_{25};\\ ^{{\mathfrak {C}}_1} \aleph ^{\alpha }_{x_3}&= a^{{\mathfrak {C}}_1}_{31} \bigwedge a^{{\mathfrak {C}}_1}_{33} \bigwedge a^{{\mathfrak {C}}_1}_{34} \bigwedge a^{{\mathfrak {C}}_1}_{35},&^{{\mathfrak {C}}_1} \aleph ^{\beta }_{x_3}&= b^{{\mathfrak {C}}_1}_{31} \bigvee b^{{\mathfrak {C}}_1}_{33};\\ ^{{\mathfrak {C}}_1} \aleph ^{\alpha }_{x_4}&= a^{{\mathfrak {C}}_1}_{44} \bigwedge a^{{\mathfrak {C}}_1}_{45},&^{{\mathfrak {C}}_1} \aleph ^{\beta }_{x_4}&= b^{{\mathfrak {C}}_1}_{41} \bigvee b^{{\mathfrak {C}}_1}_{43} \bigvee b^{{\mathfrak {C}}_1}_{44} \bigvee b^{{\mathfrak {C}}_1}_{45};\\ ^{{\mathfrak {C}}_1} \aleph ^{\alpha }_{x_5}&= a^{{\mathfrak {C}}_1}_{55},&^{{\mathfrak {C}}_1} \aleph ^{\beta }_{x_5}&= b^{{\mathfrak {C}}_1}_{51} \bigvee b^{{\mathfrak {C}}_1}_{53} \bigvee b^{{\mathfrak {C}}_1}_{55}, \end{aligned}$$
and
$$\begin{aligned} ^{{\mathfrak {C}}_2} \aleph ^{\alpha }_{x_1}&= a^{{\mathfrak {C}}_2}_{11} \bigwedge a^{{\mathfrak {C}}_2}_{12},&^{{\mathfrak {C}}_2} \aleph ^{\beta }_{x_1}&= b^{{\mathfrak {C}}_2}_{11} \bigvee b^{{\mathfrak {C}}_2}_{12} \bigvee b^{{\mathfrak {C}}_2}_{13} \bigvee b^{{\mathfrak {C}}_2}_{15};\\ ^{{\mathfrak {C}}_2} \aleph ^{\alpha }_{x_2}&= a^{{\mathfrak {C}}_2}_{22},&^{{\mathfrak {C}}_2} \aleph ^{\beta }_{x_2}&= b^{{\mathfrak {C}}_2}_{22} \bigvee b^{{\mathfrak {C}}_2}_{23} \bigvee b^{{\mathfrak {C}}_2}_{25};\\ ^{{\mathfrak {C}}_2} \aleph ^{\alpha }_{x_3}&= a^{{\mathfrak {C}}_2}_{31} \bigwedge a^{{\mathfrak {C}}_2}_{32} \bigwedge a^{{\mathfrak {C}}_2}_{33},&^{{\mathfrak {C}}_2} \aleph ^{\beta }_{x_3}&= b^{{\mathfrak {C}}_2}_{32} \bigvee b^{{\mathfrak {C}}_2}_{33} \bigvee b^{{\mathfrak {C}}_2}_{35};\\ ^{{\mathfrak {C}}_2} \aleph ^{\alpha }_{x_4}&= a^{{\mathfrak {C}}_2}_{41} \bigwedge a^{{\mathfrak {C}}_2}_{42} \bigwedge a^{{\mathfrak {C}}_2}_{43} \bigwedge a^{{\mathfrak {C}}_2}_{44} \bigwedge a^{{\mathfrak {C}}_2}_{45},&^{{\mathfrak {C}}_2} \aleph ^{\beta }_{x_4}&= b^{{\mathfrak {C}}_2}_{41} \bigvee b^{{\mathfrak {C}}_2}_{42} \bigvee b^{{\mathfrak {C}}_2}_{43} \bigvee b^{{\mathfrak {C}}_2}_{44} \bigvee b^{{\mathfrak {C}}_2}_{45};\\ ^{{\mathfrak {C}}_2} \aleph ^{\alpha }_{x_5}&= a^{{\mathfrak {C}}_2}_{51} \bigwedge a^{{\mathfrak {C}}_2}_{52} \bigwedge a^{{\mathfrak {C}}_2}_{53} \bigwedge a^{{\mathfrak {C}}_2}_{55},&^{{\mathfrak {C}}_2} \aleph ^{\beta }_{x_5}&= b^{{\mathfrak {C}}_2}_{55}. \end{aligned}$$
All these elements \(^{{\mathfrak {C}}_t}\aleph ^{\delta }_{x} = \Big \langle \ ^{{\mathfrak {C}}_t} \aleph ^{\alpha }_{x}, ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x} \Big \rangle \); (\(i=1, 2, \ldots , 5, t=1,2 \)) are displayed in Tables 4 and 5.
Table 4
BFP\(\delta \)-nghd \(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{x_i}\)
 
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{x_1}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{x_2}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{x_3}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{x_4}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{x_5}\)
\(x_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.350, -0.225\rangle \)
\(\langle 0.415, -0.500\rangle \)
\(\langle 0.575, -0.325\rangle \)
\(\langle 0.750, -0.375\rangle \)
\(x_2\)
\(\langle 0.650, -0.775\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.565, -0.775\rangle \)
\(\langle 0.725, -0.600\rangle \)
\(\langle 0.900, -0.650\rangle \)
\(x_3\)
\(\langle 0.585, -0.500\rangle \)
\(\langle 0.435, -0.225\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.660, -0.325\rangle \)
\(\langle 0.835, -0.375\rangle \)
\(x_4\)
\(\langle 0.425, -0.675\rangle \)
\(\langle 0.275, -0.400\rangle \)
\(\langle 0.340, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.675, -0.550\rangle \)
\(x_5\)
\(\langle 0.250, -0.625\rangle \)
\(\langle 0.100, -0.350\rangle \)
\(\langle 0.165, -0.625\rangle \)
\(\langle 0.325, -0.450\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 5
BFP\(\delta \)-nghd \(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{x_i}\)
 
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{x_1}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{x_2}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{x_3}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{x_4}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{x_5}\)
\(x_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.650\rangle \)
\(\langle 0.475, -0.650\rangle \)
\(\langle 0.250, -0.475\rangle \)
\(\langle 0.300, -0.675\rangle \)
\(x_2\)
\(\langle 0.450, -0.350\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.425, -0.500\rangle \)
\(\langle 0.200, -0.325\rangle \)
\(\langle 0.250, -0.525\rangle \)
\(x_3\)
\(\langle 0.525, -0.350\rangle \)
\(\langle 0.575, -0.500\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.275, -0.325\rangle \)
\(\langle 0.325, -0.525\rangle \)
\(x_4\)
\(\langle 0.750, -0.525\rangle \)
\(\langle 0.800, -0.675\rangle \)
\(\langle 0.725, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.700\rangle \)
\(x_5\)
\(\langle 0.700, -0.325\rangle \)
\(\langle 0.750, -0.475\rangle \)
\(\langle 0.675, -0.475\rangle \)
\(\langle 0.450, -0.300\rangle \)
\(\langle 0.500, -0.500\rangle \)
Define
$$\begin{aligned} \lambda= & {} \dfrac{\langle 0.250, -0.500\rangle }{x_1} + \dfrac{\langle 0.100, -0.225\rangle }{x_2} + \dfrac{\langle 0.165, -0.500\rangle }{x_3}\\{} & {} + \dfrac{\langle 0.325, -0.325\rangle }{x_4} + \dfrac{\langle 0.500, -0.375\rangle }{x_5}. \end{aligned}$$
Some simple calculations show
$$\begin{aligned} \underline{{BF}}^o_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda )&= \dfrac{\langle 0.350, -0.500\rangle }{x_1} + \dfrac{\langle 0.500, -0.475\rangle }{x_2}\\&\quad + \dfrac{\langle 0.435, -0.500\rangle }{x_3} + \dfrac{\langle 0.500, -0.450\rangle }{x_4} \\&\quad + \dfrac{\langle 0.450, -0.500\rangle }{x_5};\\ \overline{{BF}}^o_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda )&= \dfrac{\langle 0.325, -0.500\rangle }{x_1} + \dfrac{\langle 0.275, -0.500\rangle }{x_2}\\&\quad + \dfrac{\langle 0.325, -0.500\rangle }{x_3} + \dfrac{\langle 0.325, -0.500\rangle }{x_4} \\&\quad + \dfrac{\langle 0.500, -0.475\rangle }{x_5}. \end{aligned}$$
Since \(\underline{{BF}}^o_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda ) \ne \overline{{BF}}^o_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda )\), so \(\lambda \) is a BFP\(\delta \)C based OMG-BFRS.
Proposition 3.4
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), we have
(1)
\(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) = \bigcup _{t=1}^k \underline{{BF}}_{{\mathfrak {C}}_t} (\lambda )\);
 
(2)
\(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) = \bigcap _{t=1}^k \overline{{BF}}_{{\mathfrak {C}}_t} (\lambda )\).
 
Proof
It can be directly obtained from Definition 2.16 and Definition 3.1. \(\square \)
Proposition 3.5
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle , \mu = \big \langle \mu ^P, \mu ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), the following statements hold true:
(1)
\(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} ({\mathfrak {U}}) = {\mathfrak {U}}\);
 
(2)
\(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\Theta ) = \Theta \).
 
(3)
\(\lambda \subseteq \mu \), then \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(4)
\(\lambda \subseteq \mu \), then \(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(5)
\(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu ) = \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cap \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(6)
\(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) \supseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cup \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(7)
\(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) = \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cup \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(8)
\(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu ) \subseteq \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cap \overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(9)
\(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ^c) = \Big (\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \Big )^c\);
 
(10)
\(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ^c) = \Big (\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \Big )^c\).
 
Proof
(1) and (2) are straightforward.
(3)
As \(\lambda \subseteq \mu \ \text {so}\ \lambda ^P (x) \le \mu ^P (x)\) and \(\lambda ^N (x) \ge \mu ^N (x)\). To prove \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\), we have to show that for \(x\in \mho \)
$$\begin{aligned} \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&\le \underline{\big (\mu ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \end{aligned}$$
and
$$\begin{aligned} \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&\ge \underline{\big (\mu ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}. \end{aligned}$$
Now, consider
$$\begin{aligned} \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \lambda ^P(y)\bigg \}\\&\le \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \mu ^P(y)\bigg \}\\&=\underline{\big (\mu ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}. \end{aligned}$$
Similarly
$$\begin{aligned} \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \lambda ^N(y)\bigg \}\\&\ge \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \mu ^N(y)\bigg \}\\&=\underline{\big (\mu ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}. \end{aligned}$$
Hence, \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\).
 
(4)
Analogous to the proof of part (3).
 
(5)
As we know that
$$\begin{aligned}{} & {} \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu )\\ {}{} & {} \quad = \bigg \{ \Big \langle x, \underline{\big ((\lambda \cap \mu )^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \underline{\big ((\lambda \cap \mu )^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}: x\in \mho \Big \rangle \bigg \} \end{aligned}$$
and
$$\begin{aligned}{} & {} \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )\\ {}{} & {} \quad = \bigg \{ \Big \langle x, \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}: x\in \mho \Big \rangle \bigg \}, \\{} & {} \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\\ {}{} & {} \quad = \bigg \{ \Big \langle x, \underline{\big (\mu ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \underline{\big (\mu ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}: x\in \mho \Big \rangle \bigg \}. \end{aligned}$$
In order to prove \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu ) = \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cap \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\), we have to show that
$$\begin{aligned} \underline{\big ((\lambda \cap \mu )^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \wedge \underline{\big (\mu ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \end{aligned}$$
and
$$\begin{aligned} \underline{\big ((\lambda \cap \mu )^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \vee \underline{\big (\mu ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}. \end{aligned}$$
Now, according to part (3), if \(\lambda \subseteq \mu \), then \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
$$\begin{aligned}&\underline{\big ((\lambda \cap \mu )^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\\ {}&\quad = \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee (\lambda \cap \mu )^P(y)\bigg \}\\&\quad = \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \big \{\lambda ^P(y) \wedge \mu ^P(y) \big \}\bigg \}\\&\quad = \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big ( \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \lambda ^P(y)\Big )\\ {}&\qquad \wedge \Big ( \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \mu ^P(y)\Big ) \bigg \}\\&\quad = \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \lambda ^P(y)\bigg \}\\ {}&\qquad \wedge \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \mu ^P(y)\bigg \}\\&\quad =\underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \wedge \underline{\big (\mu ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}. \end{aligned}$$
Similarly
$$\begin{aligned}&\underline{\big ((\lambda \cap \mu )^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\\ {}&\quad = \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge (\lambda \cap \mu )^N(y)\bigg \}\\&\quad = \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \big \{\lambda ^N(y) \vee \mu ^N(y)\big \}\bigg \}\\&\quad = \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ \bigg (\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \lambda ^N(y)\bigg )\\&\qquad \vee \bigg (\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \mu ^N(y)\bigg )\bigg \}\\&\quad = \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \lambda ^N(y)\bigg \}\\&\qquad \vee \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \mu ^N(y)\bigg \}\\&\quad =\underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \vee \underline{\big (\mu ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}. \end{aligned}$$
This means that \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu ) = \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cap \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\).
 
(6)
Since \(\lambda \cup \mu \supseteq \lambda \) and \(\lambda \cup \mu \supseteq \mu \). Therefore, according to part (3), it implies that \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) \supseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )\) and \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) \supseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\). This means that \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) \supseteq \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cup \underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\).
 
(7)
The proof of this statement is similar to (5).
 
(8)
The proof of this statement is similar to (6).
 
(9)
We need to show that for \(x\in \mho \)
$$\begin{aligned} \underline{\Big (\big (\lambda ^P \big )^c \Big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}= & {} \bigg ( \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg )^c\ \text {and}\\ \underline{\Big (\big (\lambda ^N \big )^c \Big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}= & {} \bigg ( \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg )^c. \end{aligned}$$
Now, consider
$$\begin{aligned}&\underline{\Big (\big (\lambda ^P \big )^c \Big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\\ {}&\quad = \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \big (\lambda ^P \big )^c (y)\bigg \}\\&\quad = \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big ) \vee \big ( 1- \lambda ^P(y) \big )\bigg \}\\&\quad = 1 - \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \lambda ^P(y)\bigg \}\\&\quad = 1 - \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\\&\quad = \bigg (\overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg )^c. \end{aligned}$$
Similarly
$$\begin{aligned}&\underline{\Big (\big (\lambda ^N \big )^c \Big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \big (\lambda ^N \big )^c (y)\bigg \}\\&\quad = \bigwedge _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \big ( - 1 - \lambda ^N(y) \big )\bigg \}\\&\quad = - 1 - \bigvee _{t=1}^k \bigwedge _{y\in \mho } \bigg \{\Big ( - 1 - ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \Big ) \vee \lambda ^N(y)\bigg \}\\&\quad = - 1 - \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\\&\quad = \bigg (\overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg )^c. \end{aligned}$$
Hence, \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ^c) = \Big (\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \Big )^c\).
 
(10)
The proof is similar to (9). \(\square \)
 

BFP\(\delta \)C-PMG-BFRS model

In this section, we propose the concept of BFRS model based on BFP\(\delta \)-nhd in the context pessimistic multi-granulation environment and investigate some axiomatic systems. Due to the same method, we only provide the idea and omit some similar properties.
Definition 4.1
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a BFP\(\delta \)C-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). Assume that \(^{{\mathfrak {C}}_t}\aleph ^{\delta }_{x} = \Big \langle \ ^{{\mathfrak {C}}_t} \aleph ^{\alpha }_{x}, ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x} \Big \rangle \) is a BFP\(\delta \)-nghd of x in \(\mho \) induced by \({\mathfrak {C}}_t, t = 1, 2, \ldots , k\). Then we define the pessimistic multi-granulation BFP\(\delta \)C bipolar fuzzy preference \(\delta \)-covering lower and upper approximations of a BFS \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\) in \(\mho \) with respect to \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) as follows:
$$\begin{aligned} \left. \begin{aligned} \underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )&= \Big \langle \underline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \underline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\Big \rangle ,\\ \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )&= \Big \langle \overline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}, \overline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\Big \rangle ,\\ \end{aligned} \right\} \qquad \nonumber \\ \end{aligned}$$
(24)
where,
$$\begin{aligned}&\left. \begin{aligned} \underline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigwedge _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big (1- ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y)\Big )\vee \lambda ^P(y)\bigg \},\\ \underline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigvee _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y) \wedge \lambda ^N(y)\bigg \},\\ \overline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigvee _{t=1}^k \bigvee _{y\in \mho } \bigg \{\ ^{{\mathfrak {C}}_t}\aleph ^{\alpha }_{x}(y) \wedge \lambda ^P(y)\bigg \},\\ \overline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}&= \bigwedge _{t=1}^k \bigwedge _{y\in \mho } \bigg \{ \Big ( - 1- ^{{\mathfrak {C}}_t}\aleph ^{\beta }_{x}(y)\Big )\vee \lambda ^N(y)\bigg \}, \\&\quad \text {for every }\ x\in \mho . \end{aligned} \right\} \nonumber \\ \end{aligned}$$
(25)
If \(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \ne \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda )\), then \(\lambda \) is called BFP\(\delta \)C-PMG-BFRS; otherwise it is pessimistic multi-granulation bipolar fuzzy definable.
Remark 4.2
If \({\mathfrak {C}} = {\mathfrak {C}}_1 = {\mathfrak {C}}_2 = \cdots = {\mathfrak {C}}_t\), then the operators given in Eq. (25) degenerates into a bipolar fuzzy preference \(\delta \)-covering based bipolar fuzzy rough set proposed by Gul and Shabir [17].
Example 4.3
(Continued from Example 3.3) Let \(\big (\mho , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \big )\) be the \(BFP\delta C\)-AS in Example 3.3. Then, for
$$\begin{aligned} \lambda= & {} \dfrac{\langle 0.250, -0.500\rangle }{x_1} + \dfrac{\langle 0.100, -0.225\rangle }{x_2} + \dfrac{\langle 0.165, -0.500\rangle }{x_3}\\{} & {} + \dfrac{\langle 0.325, -0.325\rangle }{x_4} + \dfrac{\langle 0.500, -0.375\rangle }{x_5} \end{aligned}$$
and \(\delta = \langle \alpha , \beta \rangle = \langle 0.500, -0.500 \rangle \), we have
$$\begin{aligned} \underline{{BF}}^p_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda )&= \dfrac{\langle 0.325, -0.350\rangle }{x_1} + \dfrac{\langle 0.325, -0.375\rangle }{x_2} \\&\quad + \dfrac{\langle 0.325, -0.475\rangle }{x_3} + \dfrac{\langle 0.275, -0.325\rangle }{x_4} \\&\quad + \dfrac{\langle 0.100, -0.500\rangle }{x_5};\\ \overline{{BF}}^p_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda )&= \dfrac{\langle 0.500, -0.500\rangle }{x_1} + \dfrac{\langle 0.500, -0.500\rangle }{x_2}\\&\quad + \dfrac{\langle 0.500, -0.500\rangle }{x_3} + \dfrac{\langle 0.450, -0.500\rangle }{x_4}\\&\quad + \dfrac{\langle 0.500, -0.500\rangle }{x_5}. \end{aligned}$$
Since \(\underline{{BF}}^p_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda ) \ne \overline{{BF}}^p_{{{\mathfrak {C}}_1 + {{\mathfrak {C}}_2}}} (\lambda )\), so \(\lambda \) is a BFP\(\delta \)C based PMG-BFRS.
Proposition 4.4
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \cdots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \cdots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), we have
(1)
\(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) = \bigcap _{t=1}^k \underline{{BF}}_{{\mathfrak {C}}_t} (\lambda )\);
 
(2)
\(\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) = \bigcup _{t=1}^k \overline{{BF}}_{{\mathfrak {C}}_t} (\lambda )\).
 
Proof
It can be directly obtained by Definition 2.16 and Definition 4.1. \(\square \)
Proposition 4.5
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle , \mu = \big \langle \mu ^P, \mu ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), the following statements hold true:
(1)
\(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} ({\mathfrak {U}}) = {\mathfrak {U}}\);
 
(2)
\(\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\Theta ) = \Theta \).
 
(3)
\(\lambda \subseteq \mu \), then \(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(4)
\(\lambda \subseteq \mu \), then \(\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \subseteq \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(5)
\(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu ) = \underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cap \underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(6)
\(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) \supseteq \underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cup \underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(7)
\(\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cup \mu ) = \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cup \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(8)
\(\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda \cap \mu ) \subseteq \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \cap \overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\mu )\);
 
(9)
\(\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ^c) = \Big (\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \Big )^c\);
 
(10)
\(\overline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ^c) = \Big (\underline{{BF}}^p_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} (\lambda ) \Big )^c\).
 
Proof
Analogous to the proof of Proposition 3.5. \(\square \)

Relationship among the BFP\(\delta \)C-BFRS, BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS

In this section, the relationships among the BFP\(\delta \)C-BFRS, BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models will be further explored.
The following proposition gives the relationship of containment among the BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS approximations of \(\lambda \in \mathcal{B}\mathcal{F}(\mho )\).
Proposition 5.1
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), we have
(1)
\(\underline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \le \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(2)
\(\overline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \ge \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(3)
\(\underline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \ge \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(4)
\(\overline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \le \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\).
 
Proof
Straightforward. \(\square \)
The following proposition gives the relationship between the BFP\(\delta \)C approximations and the optimistic multi-granulation BFP\(\delta \)C approximations of a BFS \(\lambda \in \mathcal{B}\mathcal{F}(\mho )\).
Proposition 5.2
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), we have
(1)
\(\underline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}} \le \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(2)
\(\overline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}} \ge \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(3)
\(\underline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} \ge \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(4)
\(\overline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} \le \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\).
 
Proof
Direct consequence of Definition 2.16 and Definition 3.1. \(\square \)
The following proposition gives the relationship between the BFP\(\delta \)C approximations and the pessimistic multi-granulation BFP\(\delta \)C approximations of a BFS \(\lambda \in \mathcal{B}\mathcal{F}(\mho )\).
Proposition 5.3
Let \(\big (\mho , {\widetilde{\Upsilon }} \big )\) be a \(BFP\delta C\)-AS and \({\widetilde{\Upsilon }} = \Big \{ {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_1}\big ), {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_2}\big ), \ldots , {\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) \Big \}\) be k \(BFP\delta C\) of \(\mho \) for some \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), where \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_t}\big ) = \Big \{[x_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, [x_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}, \ldots , [x_n]_{{\mathfrak {B}}_{{\mathfrak {C}}_t}}\Big \}\) for all \(t = 1, 2, \ldots , k\). For any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), we have
(1)
\(\underline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}} \ge \underline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(2)
\(\overline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}} \le \overline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(3)
\(\underline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} \le \underline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(4)
\(\overline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} \ge \overline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\).
 
Proof
Direct consequence of Definition 2.16 and Definition 4.1. \(\square \)
Proposition 5.4
If \({\mathfrak {C}} = {\mathfrak {C}}_1 = {\mathfrak {C}}_2 = \cdots = {\mathfrak {C}}_t\), then for any \(\lambda = \big \langle \lambda ^P, \lambda ^N \big \rangle \in \mathcal{B}\mathcal{F}(\mho )\), we have
(1)
\(\underline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}} = \underline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \underline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(2)
\(\overline{\big (\lambda ^P \big )(x)}_{{\mathfrak {C}}} = \overline{\big (\lambda ^P \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \overline{\big (\lambda ^P \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(3)
\(\underline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} = \underline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \underline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\);
 
(4)
\(\overline{\big (\lambda ^N \big )(x)}_{{\mathfrak {C}}} = \overline{\big (\lambda ^N \big )^o(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} = \overline{\big (\lambda ^N \big )^p(x)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}}\).
 
Proof
Straightforward. \(\square \)

An application of MCDM methods by BFP\(\delta \)C-OMG-BFRS model

In this section, we develop a novel MCDM technique under the environment of the BFP\(\delta \)C based BFRS model in which attribute (criteria) weight are real numbers and attributes values are bipolar fuzzy numbers. We subsequently apply this approach to solve the problem of smartphone selection.

The problem statement

Assume that \(\mho = \{x_i: i = 1, 2, \ldots , n\}\) be the finite set of n alternatives and \({\mathfrak {C}} = \{{\mathfrak {C}}_k: k=1, 2, \ldots , m \}\) be a finite set of m criteria that are determined by a decision-maker (expert). Let \({\mathcal {W}}= (\varpi _1, \varpi _2, \ldots , \varpi _m )^T\) be the weight vector of all criteria, representing the importance of each criteria, where \(0\le \varpi _j\le 1\) and satisfies the normalized condition \(\sum _{j=1}^m \varpi _j = 1\). Let the BFS \(\lambda = \big \{ \big \langle x, \lambda ^P (x), \lambda ^N (x)\big \rangle : x\in \mho \big \}\) over \(\mho \) be the description af all alternatives by the expert (decision-maker). Let \({\mathcal {E}}\) represent a finite set of the domain for the information functions \(f(x_\ell , {\mathfrak {C}}_k)\) and \(g(x_\ell , {\mathfrak {C}}_k)\), where \(f(x_\ell , {\mathfrak {C}}_k)\in [0, 1] \) stands for the positive membership (or satisfaction degree) of the alternative \(x_\ell \) with respect to \({\mathfrak {C}}_k\) given by the expert and \(g(x_\ell , {\mathfrak {C}}_k)\in [-1, 0]\) stands for the negative membership (or dissatisfaction degree) of the alternative \(x_\ell \) with respect to \({\mathfrak {C}}_k\) given by the expert. The bipolar fuzzy preference class \([x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}(x_j)\) stands for the efficacy value of alternatives \(x_j\)’s with respect to \({\mathfrak {C}}_k\). For a critical value \(\delta = \langle \alpha , \beta \rangle \in (0, 1] \times [-1, 0)\), let for each alternative \(x_i\in \mho \), there is at least one criteria \({\mathfrak {C}}_k\in {\mathfrak {C}}\) such that the efficacy value of alternatives \(x_j\) for the criteria \({\mathfrak {C}}_k\) is not less than \(\alpha \) and greater than \(\beta \), and \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big )\) is a \(BFP\delta C\) of \(\mho \). Then the BFP\(\delta \)-nghd \(\aleph ^{\delta }_{x_j}\) of \(x_j\) with respect to \({\mathfrak {C}}_k\) is a BFS given as
$$\begin{aligned} ^{{\mathfrak {C}}_k}\aleph ^{\delta }_{x_j}(x_t)= & {} \bigg [ \bigwedge \Big \{ a^{{\mathfrak {C}}_k}_{ij}: a^{{\mathfrak {C}}_k}_{ij}\ge \alpha \Big \}, \bigvee \Big \{ b^{{\mathfrak {C}}_k}_{ij}: b^{{\mathfrak {C}}_k}_{ij}\le \beta \Big \} \bigg ]\nonumber \\{} & {} (x_t); t = 1, 2, \ldots , n, \end{aligned}$$
(26)
which express the minimum of all efficacy values for each alternatives \(x_t\) with respect to \({\mathfrak {C}}_k\).
If \(\lambda = \big \{ \big \langle x_i, \lambda ^P (x_i), \lambda ^N (x_i)\big \rangle : x_i\in \mho \big \} \in \mathcal{B}\mathcal{F}(\mho )\) represent possible membership and non-membership degree of each alternative \(x_i\in \mho \) given by the expert, then the DM for MCDM problem is how to select an optimal alternative among all.
We denote the bipolar fuzzified information system \((\mho , {\mathfrak {C}}, {\mathcal {W}}, {\mathcal {E}})\).

Algorithm for the proposed MCDM using BFP\(\delta \)C-OMG-BFRS model

To select the optimal alternative among the available ones, here we propose a DM algorithm in the context of the BFP\(\delta \)C based BFRS model. The related steps are summarized as follows:
Input: Bipolar fuzzified information system \((\mho , {\mathfrak {C}}, {\mathcal {W}}, {\mathcal {E}})\).
Step 1:
Evaluate \({\mathfrak {B}}_{{\mathfrak {C}}_k}; k =1, 2, \cdots , m\) using transfer functions given in Eqs. (10) and (11).
Step 2:
Calculate \([x_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}\) of \(x_i\) with respect to \({\mathfrak {C}}_k\).
Step 3:
Construct \(^{{\mathfrak {C}}_k}\aleph ^{\delta }_{x_i} = \Big \langle \ ^{{\mathfrak {C}}_k}\aleph ^{\alpha }_{x_i},\ ^{{\mathfrak {C}}_k}\aleph ^{\beta }_{x_i} \Big \rangle \) of \(x_i\) with respect to \({\mathfrak {C}}_k\).
Step 4:
Use the method of bipolar fuzzy TOPSIS to determine a positive ideal solution \({{\mathcal {I}}_k^+}\) and negative ideal solution \({{\mathcal {I}}_k^-}\) as
$$\begin{aligned} {{\mathcal {I}}_k^+}= & {} \bigg \{ \Big \langle \bigvee \ ^{{\mathfrak {C}}_k}\aleph ^{\alpha }_{x_i}(x_j), \bigwedge \ ^{{\mathfrak {C}}_k}\aleph ^{\beta }_{x_i}(x_j) \Big \rangle : j = 1, 2, \ldots , n \bigg \}, \nonumber \\ \end{aligned}$$
(27)
$$\begin{aligned} {{\mathcal {I}}_k^-}= & {} \bigg \{ \Big \langle \bigwedge \ ^{{\mathfrak {C}}_k}\aleph ^{\alpha }_{x_i}(x_j), \bigvee \ ^{{\mathfrak {C}}_k}\aleph ^{\beta }_{x_i}(x_j) \Big \rangle : j = 1, 2, \ldots , n \bigg \}, \nonumber \\ \end{aligned}$$
(28)
where \(k = 1, 2, \ldots , m\).
Step 5:
Calculate the following approximations \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_k^+ \big )\), \(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_k^+ \big )\), \(\underline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_k^- \big )\) and \(\overline{{BF}}^o_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_k^- \big )\) according to Definition 3.1.
Step 6:
Compute the ranking index \(\delta _k(x_j)\), where
$$\begin{aligned}&\delta _k(x_j)\nonumber \\ {}&\quad = \left\{ \begin{aligned} \dfrac{1}{4} \left\{ \begin{aligned}&\ \quad \bigg \{ \underline{\Big (\big ({{\mathcal {I}}_k^+} \big )^P\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} - \underline{\Big (\big ({{\mathcal {I}}_k^-} \big )^P\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg \}^2\\&+ \bigg \{ \underline{\Big (\big ({{\mathcal {I}}_k^+} \big )^N\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} + \underline{\Big (\big ({{\mathcal {I}}_k^-} \big )^N\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg \}^2\\&+ \bigg \{ \overline{\Big (\big ({{\mathcal {I}}_k^+} \big )^P\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} - \overline{\Big (\big ({{\mathcal {I}}_k^-} \big )^P\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg \}^2\\&+ \bigg \{ \overline{\Big (\big ({{\mathcal {I}}_k^+} \big )^N\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} + \overline{\Big (\big ({{\mathcal {I}}_k^-} \big )^N\Big )^o(x_j)}_{\sum _{t=1}^{k}{{\mathfrak {C}}_t}} \bigg \}^2 \end{aligned} \right\} \end{aligned} \right\} ^{1/2}. \end{aligned}$$
(29)
Step 7:
Evaluate the optimal index \(\partial (x_j)\), where
$$\begin{aligned} \partial (x_j) = \sum _{k=1}^m \varpi _k \delta _k(x_j). \end{aligned}$$
(30)
Step 8:
Rank the alternatives with respect to the values of \(\partial (x_j)\) and make the decision.
Output: A ranking result of all alternatives.
A flowchart depiction of the proposed MCDM problem is given in Fig. 1.

An applied example

According to the problem statement in “The problem statement” section, we give an example for solving the smartphone selection problem to verify the validity of the suggested model.
Example 6.1
Consider a decision-maker confused about selecting a smartphone among five smartphones displayed for sale in a store. Assume that he is focused on the following characteristics (criteria) to acquire the best smartphone: colour, memory, elegancy, and camera zoom of a smartphone. Since it is known that every aspect affects the cost and benefit of the intended smartphone. So, these smartphones denote the alternatives, and the mentioned features represent the criteria in our MCDM problem.
Let \(\mho = \{S_1, S_2, S_3, S_4, S_5\}\) be the collection of concerned smartphones and \({\mathfrak {C}} = \{ {\mathfrak {C}}_1, {\mathfrak {C}}_2, {\mathfrak {C}}_3, {\mathfrak {C}}_4 \}\) be the set of concerned features. The weights of all criteria are given as \({\mathcal {W}}= (0.25, 0.3, 0.25, 0.2)^T\). The ratings of alternatives with respect to criteria are portrayed in Table 6.
Table 6
Bipolar fuzzified information matrix
\(\mho / {\mathfrak {C}}\)
\({\mathfrak {C}}_1\)
\({\mathfrak {C}}_2\)
\({\mathfrak {C}}_3\)
\({\mathfrak {C}}_4\)
\(S_1\)
(0.5, \(-0.25\))
(0.8, \(-0.7\))
(0.3, \(-0.1\))
(0.6, \(-0.6\))
\(S_2\)
(0.2, \(-0.8\))
(0.9, \(-0.4\))
(0.6, \(-0.3\))
(0.55, \(-0.5\))
\(S_3\)
(0.33, \(-0.25\))
(0.75, \(-0.4\))
(0.25, \(-0.7\))
(0.3, \(-0.1\))
\(S_4\)
(0.65, \(-0.6\))
(0.3, \(-0.75\))
(0.8, \(-0.35\))
(0.65, \(-0.7\))
\(S_5\)
(1, \(-0.5\))
(0.4, \(-0.35\))
(0.2, \(-0.6\))
(0.25, \(-0.65\))
For the selection of the most suitable smartphone, the calculation steps are shown as follows:
Step 1:
Based on criteria \({\mathfrak {C}}_1, {\mathfrak {C}}_2, {\mathfrak {C}}_3, {\mathfrak {C}}_4\) and using formulas (10) and (11) to evaluate the BFPRs of alternative \(S_i\) to the alternative \(S_j (i, j=1, 2, \ldots , 5)\), we obtain:
$$\begin{aligned} {\mathfrak {B}}_{{\mathfrak {C}}_1}(S_i, S_j)= & {} \begin{pmatrix} \langle 0.500, -0.500\rangle &{} \langle 0.650, -0.775\rangle &{} \langle 0.585, -0.500\rangle &{} \langle 0.425, -0.675\rangle &{} \langle 0.250, -0.625\rangle \\ \langle 0.350, -0.225\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.435, -0.225\rangle &{} \langle 0.275, -0.400\rangle &{} \langle 0.100, -0.350\rangle \\ \langle 0.415, -0.500\rangle &{} \langle 0.565, -0.775\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.340, -0.675\rangle &{} \langle 0.165, -0.625\rangle \\ \langle 0.575, -0.325\rangle &{} \langle 0.725, -0.600\rangle &{} \langle 0.660, -0.325\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.325, -0.450\rangle \\ \langle 0.750, -0.375\rangle &{} \langle 0.900, -0.650\rangle &{} \langle 0.835, -0.375\rangle &{} \langle 0.675, -0.550\rangle &{} \langle 0.500, -0.500\rangle \\ \end{pmatrix}, \end{aligned}$$
(31)
$$\begin{aligned} {\mathfrak {B}}_{{\mathfrak {C}}_2}(S_i, S_j)= & {} \begin{pmatrix} \langle 0.500, -0.500\rangle &{} \langle 0.450, -0.350\rangle &{} \langle 0.525, -0.350\rangle &{} \langle 0.750, -0.525\rangle &{} \langle 0.700, -0.325\rangle \\ \langle 0.550, -0.650\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.575, -0.500\rangle &{} \langle 0.800, -0.675\rangle &{} \langle 0.750, -0.475\rangle \\ \langle 0.475, -0.650\rangle &{} \langle 0.425, -0.500\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.725, -0.675\rangle &{} \langle 0.675, -0.475\rangle \\ \langle 0.250, -0.475\rangle &{} \langle 0.200, -0.325\rangle &{} \langle 0.275, -0.325\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.450, -0.300\rangle \\ \langle 0.300, -0.675\rangle &{} \langle 0.250, -0.525\rangle &{} \langle 0.325, -0.525\rangle &{} \langle 0.550, -0.700\rangle &{} \langle 0.500, -0.500\rangle \\ \end{pmatrix}, \end{aligned}$$
(32)
$$\begin{aligned} {\mathfrak {B}}_{{\mathfrak {C}}_3}(S_i, S_j)= & {} \begin{pmatrix} \langle 0.500, -0.500\rangle &{} \langle 0.350, -0.600\rangle &{} \langle 0.525, -0.800\rangle &{} \langle 0.250, -0.625\rangle &{} \langle 0.550, -0.750\rangle \\ \langle 0.650, -0.400\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.675, -0.700\rangle &{} \langle 0.400, -0.525\rangle &{} \langle 0.700, -0.650\rangle \\ \langle 0.475, -0.200\rangle &{} \langle 0.325, -0.300\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.225, -0.325\rangle &{} \langle 0.525, -0.450\rangle \\ \langle 0.750, -0.375\rangle &{} \langle 0.600, -0.475\rangle &{} \langle 0.775, -0.675\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.800, -0.625\rangle \\ \langle 0.450, -0.250\rangle &{} \langle 0.300, -0.350\rangle &{} \langle 0.475, -0.550\rangle &{} \langle 0.200, -0.375\rangle &{} \langle 0.500, -0.500\rangle \\ \end{pmatrix}, \end{aligned}$$
(33)
$$\begin{aligned} {\mathfrak {B}}_{{\mathfrak {C}}_4}(S_i, S_j)= & {} \begin{pmatrix} \langle 0.500, -0.500\rangle &{} \langle 0.525, -0.450\rangle &{} \langle 0.650, -0.250\rangle &{} \langle 0.475, -0.550\rangle &{} \langle 0.675, -0.525\rangle \\ \langle 0.475, -0.550\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.625, -0.300\rangle &{} \langle 0.450, -0.600\rangle &{} \langle 0.650, -0.575\rangle \\ \langle 0.350, -0.750\rangle &{} \langle 0.375, -0.700\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.325, -0.800\rangle &{} \langle 0.525, -0.775\rangle \\ \langle 0.525, -0.450\rangle &{} \langle 0.550, -0.400\rangle &{} \langle 0.675, -0.200\rangle &{} \langle 0.500, -0.500\rangle &{} \langle 0.700, -0.475\rangle \\ \langle 0.325, -0.475\rangle &{} \langle 0.350, -0.425\rangle &{} \langle 0.475, -0.225\rangle &{} \langle 0.300, -0.525\rangle &{} \langle 0.500, -0.500\rangle \\ \end{pmatrix}. \end{aligned}$$
(34)
Step 2:
The bipolar fuzzy preference classes \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\), \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\), \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\) and \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\) are, respectively, given in Tables 789 and 10.
Table 7
Bipolar fuzzy preference classes \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
 
\([S_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([S_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([S_3]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([S_4]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\([S_5]_{{\mathfrak {B}}_{{\mathfrak {C}}_1}}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.350, -0.225\rangle \)
\(\langle 0.415, -0.500\rangle \)
\(\langle 0.575, -0.325\rangle \)
\(\langle 0.750, -0.375\rangle \)
\(S_2\)
\(\langle 0.650, -0.775\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.565, -0.775\rangle \)
\(\langle 0.725, -0.600\rangle \)
\(\langle 0.900, -0.650\rangle \)
\(S_3\)
\(\langle 0.585, -0.500\rangle \)
\(\langle 0.435, -0.225\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.660, -0.325\rangle \)
\(\langle 0.835, -0.375\rangle \)
\(S_4\)
\(\langle 0.425, -0.675\rangle \)
\(\langle 0.275, -0.400\rangle \)
\(\langle 0.340, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.675, -0.550\rangle \)
\(S_5\)
\(\langle 0.250, -0.625\rangle \)
\(\langle 0.100, -0.350\rangle \)
\(\langle 0.165, -0.625\rangle \)
\(\langle 0.325, -0.450\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 8
Bipolar fuzzy preference classes \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
 
\([S_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([S_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([S_3]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([S_4]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\([S_5]_{{\mathfrak {B}}_{{\mathfrak {C}}_2}}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.650\rangle \)
\(\langle 0.475, -0.650\rangle \)
\(\langle 0.250, -0.475\rangle \)
\(\langle 0.300, -0.675\rangle \)
\(S_2\)
\(\langle 0.450, -0.350\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.425, -0.500\rangle \)
\(\langle 0.200, -0.325\rangle \)
\(\langle 0.250, -0.525\rangle \)
\(S_3\)
\(\langle 0.525, -0.350\rangle \)
\(\langle 0.575, -0.500\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.275, -0.325\rangle \)
\(\langle 0.325, -0.525\rangle \)
\(S_4\)
\(\langle 0.750, -0.525\rangle \)
\(\langle 0.800, -0.675\rangle \)
\(\langle 0.725, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.700\rangle \)
\(S_5\)
\(\langle 0.700, -0.325\rangle \)
\(\langle 0.750, -0.475\rangle \)
\(\langle 0.675, -0.475\rangle \)
\(\langle 0.450, -0.300\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 9
Bipolar fuzzy preference classes \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\)
 
\([S_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\)
\([S_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\)
\([S_3]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\)
\([S_4]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\)
\([S_5]_{{\mathfrak {B}}_{{\mathfrak {C}}_3}}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.650, -0.400\rangle \)
\(\langle 0.475, -0.200\rangle \)
\(\langle 0.750, -0.375\rangle \)
\(\langle 0.450, -0.250\rangle \)
\(S_2\)
\(\langle 0.350, -0.600\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.325, -0.300\rangle \)
\(\langle 0.600, -0.475\rangle \)
\(\langle 0.300, -0.350\rangle \)
\(S_3\)
\(\langle 0.525, -0.800\rangle \)
\(\langle 0.675, -0.700\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.775, -0.675\rangle \)
\(\langle 0.475, -0.550\rangle \)
\(S_4\)
\(\langle 0.250, -0.625\rangle \)
\(\langle 0.400, -0.525\rangle \)
\(\langle 0.225, -0.325\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.200, -0.375\rangle \)
\(S_5\)
\(\langle 0.550, -0.750\rangle \)
\(\langle 0.700, -0.650\rangle \)
\(\langle 0.525, -0.450\rangle \)
\(\langle 0.800, -0.625\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 10
Bipolar fuzzy preference classes \([S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\)
 
\([S_1]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\)
\([S_2]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\)
\([S_3]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\)
\([S_4]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\)
\([S_5]_{{\mathfrak {B}}_{{\mathfrak {C}}_4}}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.475, -0.550\rangle \)
\(\langle 0.350, -0.750\rangle \)
\(\langle 0.525, -0.450\rangle \)
\(\langle 0.325, -0.475\rangle \)
\(S_2\)
\(\langle 0.525, -0.450\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.375, -0.700\rangle \)
\(\langle 0.550, -0.400\rangle \)
\(\langle 0.350, -0.425\rangle \)
\(S_3\)
\(\langle 0.650, -0.250\rangle \)
\(\langle 0.625, -0.300\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.675, -0.200\rangle \)
\(\langle 0.475, -0.225\rangle \)
\(S_4\)
\(\langle 0.475, -0.550\rangle \)
\(\langle 0.450, -0.600\rangle \)
\(\langle 0.325, -0.800\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.300, -0.525\rangle \)
\(S_5\)
\(\langle 0.675, -0.525\rangle \)
\(\langle 0.650, -0.575\rangle \)
\(\langle 0.525, -0.775\rangle \)
\(\langle 0.700, -0.475\rangle \)
\(\langle 0.500, -0.500\rangle \)
Clearly, from Tables 789 and 10, we can observe that \({\mathscr {P}}\big ({\mathfrak {B}}_{{\mathfrak {C}}_k}\big ) = \Big \{[S_i]_{{\mathfrak {B}}_{{\mathfrak {C}}_k}}: i=1, 2, \ldots , 5, k=1, 2, 3, 4\Big \}\) is a \(BFP\delta C\) of \(\mho \) \(\big (\delta = \langle 0.500, -0.500 \rangle \big )\).
Step 3:
Let \(\delta = \langle \alpha , \beta \rangle = \langle 0.500, -0.500 \rangle \) be the critical value. Then the elements \(^{{\mathfrak {C}}_k}\aleph ^{\delta }_{S_i} = \Big \langle \ ^{{\mathfrak {C}}_k}\aleph ^{\alpha }_{S_i},\ ^{{\mathfrak {C}}_k}\aleph ^{\beta }_{S_i} \Big \rangle \) \((i=1, 2 \ldots , 5, k=1, 2, 3, 4)\) are displayed in Tables 111213 and 14.
Table 11
BFP\(\delta \)-nghd \(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{S_i}\)
 
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{S_1}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{S_2}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{S_3}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{S_4}\)
\(^{{\mathfrak {C}}_1}\aleph ^{\delta }_{S_5}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.350, -0.225\rangle \)
\(\langle 0.415, -0.500\rangle \)
\(\langle 0.575, -0.325\rangle \)
\(\langle 0.750, -0.375\rangle \)
\(S_2\)
\(\langle 0.650, -0.775\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.565, -0.775\rangle \)
\(\langle 0.725, -0.600\rangle \)
\(\langle 0.900, -0.650\rangle \)
\(S_3\)
\(\langle 0.585, -0.500\rangle \)
\(\langle 0.435, -0.225\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.660, -0.325\rangle \)
\(\langle 0.835, -0.375\rangle \)
\(S_4\)
\(\langle 0.425, -0.675\rangle \)
\(\langle 0.275, -0.400\rangle \)
\(\langle 0.340, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.675, -0.550\rangle \)
\(S_5\)
\(\langle 0.250, -0.625\rangle \)
\(\langle 0.100, -0.350\rangle \)
\(\langle 0.165, -0.625\rangle \)
\(\langle 0.325, -0.450\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 12
BFP\(\delta \)-nghd \(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{S_i}\)
 
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{S_1}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{S_2}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{S_3}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{S_4}\)
\(^{{\mathfrak {C}}_2}\aleph ^{\delta }_{S_5}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.650\rangle \)
\(\langle 0.475, -0.650\rangle \)
\(\langle 0.250, -0.475\rangle \)
\(\langle 0.300, -0.675\rangle \)
\(S_2\)
\(\langle 0.450, -0.350\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.425, -0.500\rangle \)
\(\langle 0.200, -0.325\rangle \)
\(\langle 0.250, -0.525\rangle \)
\(S_3\)
\(\langle 0.525, -0.350\rangle \)
\(\langle 0.575, -0.500\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.275, -0.325\rangle \)
\(\langle 0.325, -0.525\rangle \)
\(S_4\)
\(\langle 0.750, -0.525\rangle \)
\(\langle 0.800, -0.675\rangle \)
\(\langle 0.725, -0.675\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.550, -0.700\rangle \)
\(S_5\)
\(\langle 0.700, -0.325\rangle \)
\(\langle 0.750, -0.475\rangle \)
\(\langle 0.675, -0.475\rangle \)
\(\langle 0.450, -0.300\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 13
BFP\(\delta \)-nghd \(^{{\mathfrak {C}}_3}\aleph ^{\delta }_{S_i}\)
 
\(^{{\mathfrak {C}}_3}\aleph ^{\delta }_{S_1}\)
\(^{{\mathfrak {C}}_3}\aleph ^{\delta }_{S_2}\)
\(^{{\mathfrak {C}}_3}\aleph ^{\delta }_{S_3}\)
\(^{{\mathfrak {C}}_3}\aleph ^{\delta }_{S_4}\)
\(^{{\mathfrak {C}}_3}\aleph ^{\delta }_{S_5}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.650, -0.400\rangle \)
\(\langle 0.475, -0.200\rangle \)
\(\langle 0.750, -0.375\rangle \)
\(\langle 0.450, -0.250\rangle \)
\(S_2\)
\(\langle 0.350, -0.600\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.325, -0.300\rangle \)
\(\langle 0.600, -0.475\rangle \)
\(\langle 0.300, -0.350\rangle \)
\(S_3\)
\(\langle 0.525, -0.800\rangle \)
\(\langle 0.675, -0.700\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.775, -0.675\rangle \)
\(\langle 0.475, -0.550\rangle \)
\(S_4\)
\(\langle 0.250, -0.625\rangle \)
\(\langle 0.400, -0.525\rangle \)
\(\langle 0.225, -0.325\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.200, -0.375\rangle \)
\(S_5\)
\(\langle 0.550, -0.750\rangle \)
\(\langle 0.700, -0.650\rangle \)
\(\langle 0.525, -0.450\rangle \)
\(\langle 0.800, -0.625\rangle \)
\(\langle 0.500, -0.500\rangle \)
Table 14
BFP\(\delta \)-nghd \(^{{\mathfrak {C}}_4}\aleph ^{\delta }_{S_i}\)
 
\(^{{\mathfrak {C}}_4}\aleph ^{\delta }_{S_1}\)
\(^{{\mathfrak {C}}_4}\aleph ^{\delta }_{S_2}\)
\(^{{\mathfrak {C}}_4}\aleph ^{\delta }_{S_3}\)
\(^{{\mathfrak {C}}_4}\aleph ^{\delta }_{S_4}\)
\(^{{\mathfrak {C}}_4}\aleph ^{\delta }_{S_5}\)
\(S_1\)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.475, -0.550\rangle \)
\(\langle 0.350, -0.750\rangle \)
\(\langle 0.525, -0.450\rangle \)
\(\langle 0.325, -0.475\rangle \)
\(S_2\)
\(\langle 0.525, -0.450\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.375, -0.700\rangle \)
\(\langle 0.550, -0.400\rangle \)
\(\langle 0.350, -0.425\rangle \)
\(S_3\)
\(\langle 0.650, -0.250\rangle \)
\(\langle 0.625, -0.300\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.675, -0.200\rangle \)
\(\langle 0.475, -0.225\rangle \)
\(S_4\)
\(\langle 0.475, -0.550\rangle \)
\(\langle 0.450, -0.600\rangle \)
\(\langle 0.325, -0.800\rangle \)
\(\langle 0.500, -0.500\rangle \)
\(\langle 0.300, -0.525\rangle \)
\(S_5\)
\(\langle 0.675, -0.525\rangle \)
\(\langle 0.650, -0.575\rangle \)
\(\langle 0.525, -0.775\rangle \)
\(\langle 0.700, -0.475\rangle \)
\(\langle 0.500, -0.500\rangle \)
Step 4:
According to formulas (27) and (28), the positive and negative ideal solutions with respect to \({\mathfrak {C}}_k\) are evaluated as follows:
$$\begin{aligned} {{\mathcal {I}}_1^+}&= \dfrac{\langle 0.650, -0.775\rangle }{S_1} + \dfrac{\langle 0.500, -0.500\rangle }{S_2} + \dfrac{\langle 0.565, -0.775\rangle }{S_3} \\&\quad + \dfrac{\langle 0.725, -0.600\rangle }{S_4} + \dfrac{\langle 0.900, -0.650\rangle }{S_5},\\ {{\mathcal {I}}_1^-}&= \dfrac{\langle 0.250, -0.500\rangle }{S_1} + \dfrac{\langle 0.100, -0.225\rangle }{S_2} \\&\quad + \dfrac{\langle 0.165, -0.500\rangle }{S_3} + \dfrac{\langle 0.325, -0.325\rangle }{S_4} + \dfrac{\langle 0.500, -0.375\rangle }{S_5},\\ {{\mathcal {I}}_2^+}&= \dfrac{\langle 0.750, -0.525\rangle }{S_1} + \dfrac{\langle 0.800, -0.675\rangle }{S_2} + \dfrac{\langle 0.725, -0.675\rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.500\rangle }{S_4} + \dfrac{\langle 0.550, -0.700\rangle }{S_5},\\ {{\mathcal {I}}_2^-}&= \dfrac{\langle 0.450, -0.325\rangle }{S_1} + \dfrac{\langle 0.500, -0.475\rangle }{S_2} + \dfrac{\langle 0.425, -0.475\rangle }{S_3} \\&\quad + \dfrac{\langle 0.200, -0.300\rangle }{S_4} + \dfrac{\langle 0.250, -0.500\rangle }{S_5},\\ {{\mathcal {I}}_3^+}&= \dfrac{\langle 0.550, -0.800\rangle }{S_1} + \dfrac{\langle 0.700, -0.700\rangle }{S_2} + \dfrac{\langle 0.525, -0.500\rangle }{S_3} \\&\quad + \dfrac{\langle 0.800, -0.675\rangle }{S_4} + \dfrac{\langle 0.500, -0.550\rangle }{S_5},\\ {{\mathcal {I}}_3^-}&= \dfrac{\langle 0.250, -0.500\rangle }{S_1} + \dfrac{\langle 0.400, -0.400\rangle }{S_2} + \dfrac{\langle 0.225, -0.200\rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.375\rangle }{S_4} + \dfrac{\langle 0.200, -0.250\rangle }{S_5},\\ {{\mathcal {I}}_4^+}&= \dfrac{\langle 0.675, -0.550\rangle }{S_1} + \dfrac{\langle 0.650, -0.600\rangle }{S_2} + \dfrac{\langle 0.525, -0.800\rangle }{S_3} \\&\quad + \dfrac{\langle 0.700, -0.500\rangle }{S_4} + \dfrac{\langle 0.500, -0.525\rangle }{S_5},\\ {{\mathcal {I}}_4^-}&= \dfrac{\langle 0.475, -0.250\rangle }{S_1} + \dfrac{\langle 0.450, -0.300\rangle }{S_2} + \dfrac{\langle 0.325, -0.500\rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.200\rangle }{S_4} + \dfrac{\langle 0.300, -0.225\rangle }{S_5}. \end{aligned}$$
Step 5:
According to Definition 3.1, we can get the following approximations:
$$\begin{aligned} \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_1^+ \big )&= \dfrac{\langle 0.565, -0.650\rangle }{S_1} + \dfrac{\langle 0.500, -0.500 \rangle }{S_2} \\&\quad +\dfrac{\langle 0.565, -0.700 \rangle }{S_3} + \dfrac{\langle 0.725, -0.600 \rangle }{S_4} \\&\quad + \dfrac{\langle 0.675, -0.600 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_1^+ \big )&= \dfrac{\langle 0.550, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.525 \rangle }{S_2}\\&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_3} + \dfrac{\langle 0.500, -0.625 \rangle }{S_4}\\ {}&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_1^- \big )&= \dfrac{\langle 0.475, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.500 \rangle }{S_2}\\&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_3} + \dfrac{\langle 0.500, -0.475 \rangle }{S_4}\\&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_1^- \big )&= \dfrac{\langle 0.325, -0.500 \rangle }{S_1} + \dfrac{\langle 0.275, -0.350 \rangle }{S_2} \\&\quad + \dfrac{\langle 0.325, -0.225 \rangle }{S_3} + \dfrac{\langle 0.325, -0.500 \rangle }{S_4} \\&\quad + \dfrac{\langle 0.500, -0.325 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_2^+ \big )&= \dfrac{\langle 0.575, -0.525 \rangle }{S_1} + \dfrac{\langle 0.725, -0.650 \rangle }{S_2} \\&\quad + \dfrac{\langle 0.660, -0.675 \rangle }{S_3} + \dfrac{\langle 0.500, -0.500 \rangle }{S_4}\\&\quad + \dfrac{\langle 0.550, -0.675 \rangle }{S_5}; \end{aligned}$$
$$\begin{aligned} \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_2^+ \big )&= \dfrac{\langle 0.550, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.525 \rangle }{S_2}\\&\quad + \dfrac{\langle 0.525, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.525 \rangle }{S_4} + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_2^- \big )&= \dfrac{\langle 0.450, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.500 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.475 \rangle }{S_4} + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_2^- \big )&= \dfrac{\langle 0.450, -0.400 \rangle }{S_1} + \dfrac{\langle 0.500, -0.475 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.425, -0.475 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.275, -0.475 \rangle }{S_4} + \dfrac{\langle 0.325, -0.500 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_3^+ \big )&= \dfrac{\langle 0.525, -0.675 \rangle }{S_1} + \dfrac{\langle 0.565, -0.650 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.525, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.550, -0.625 \rangle }{S_4} + \dfrac{\langle 0.500, -0.550 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_3^+ \big )&= \dfrac{\langle 0.525, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.500 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{x_3} \\&\quad + \dfrac{\langle 0.500, -0.600 \rangle }{S_4} + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_3^- \big )&= \dfrac{\langle 0.450, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.500 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.475, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.475 \rangle }{S_4} + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_3^- \big )&= \dfrac{\langle 0.350, -0.500 \rangle }{S_1} + \dfrac{\langle 0.400, -0.400 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.325, -0.300 \rangle }{S_3}\\&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_4} + \dfrac{\langle 0.300, -0.400 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_4^+ \big )&= \dfrac{\langle 0.525, -0.550 \rangle }{S_1} + \dfrac{\langle 0.565, -0.550 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.525, -0.700 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.550, -0.500 \rangle }{S_4} + \dfrac{\langle 0.500, -0.525 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_4^+ \big )&= \dfrac{\langle 0.525, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.525 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.500, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.550 \rangle }{S_4} + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \underline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_4^- \big )&= \dfrac{\langle 0.450, -0.500 \rangle }{S_1} + \dfrac{\langle 0.500, -0.500 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.475, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.400 \rangle }{S_4} + \dfrac{\langle 0.500, -0.500 \rangle }{S_5};\\ \overline{{BF}}^o_{\sum _{t=1}^{4}{{\mathfrak {C}}_t}} \big ({\mathcal {I}}_4^- \big )&= \dfrac{\langle 0.475, -0.300 \rangle }{S_1} + \dfrac{\langle 0.450, -0.300 \rangle }{S_2}\\ {}&\quad + \dfrac{\langle 0.375, -0.500 \rangle }{S_3} \\&\quad + \dfrac{\langle 0.500, -0.325 \rangle }{S_4} + \dfrac{\langle 0.350, -0.450 \rangle }{S_5}. \end{aligned}$$
Step 6:
According to formula (29), the ranking index can be determined as follows:
$$\begin{aligned} \delta _1(S_j)&= \dfrac{0.772}{S_1} + \dfrac{0.674}{S_2} + \dfrac{0.707}{S_3} + \dfrac{0.791}{S_4} + \dfrac{0.693}{S_5}, \\ \delta _2(S_j)&= \dfrac{0.687}{S_1} + \dfrac{0.770}{S_2} + \dfrac{0.769}{S_3} + \dfrac{0.707}{S_4} + \dfrac{0.777}{S_5}, \\ \delta _3(S_j)&= \dfrac{0.777}{S_1} + \dfrac{0.733}{S_2} + \dfrac{0.647}{S_3} + \dfrac{0.778}{S_4} + \dfrac{0.699}{S_5}, \\ \delta _4(S_j)&= \dfrac{0.662}{S_1} + \dfrac{0.669}{S_2} + \dfrac{0.784}{S_3} + \dfrac{0.628}{S_4} + \dfrac{0.703}{S_5}. \end{aligned}$$
Step 7:
As the weight of each criterion is given as \(\varpi _1 = 0.25, \varpi _2 = 0.3, \varpi _3 = 0.25, \varpi _4 = 0.2\), so in the light of formula (30), the optimal index can be calculated as follows:
$$\begin{aligned} \partial (x_j)&= \dfrac{0.730}{S_1} + \dfrac{0.717}{S_2} + \dfrac{0.726}{S_3} + \dfrac{0.730}{S_4} + \dfrac{0.722}{S_5}. \end{aligned}$$
Step 8:
The ranking of the smartphones is
$$\begin{aligned} S_1\thickapprox S_4 \succeq S_3 \succeq S_5 \succeq S_2. \end{aligned}$$
From the ranking result, we conclude that \(S_1\) and \(S_4\) are the most suitable smartphones. The graphic representation of the ranking of the smartphones is displayed in Fig. 2.

Comparative analysis

This section examines the advantages of the designed methodology and compares it to some existing approaches.
Table 15
Characteristics comparison of different methods with proposed method
Methods
Characteristics
 
Handle MF
Handle NMF
Manage MGE
Covering
Ranking
Alghamdi et al. [1]
\(\checkmark \)
\(\checkmark \)
\(\checkmark \)
Dubois and Prade [7]
\(\checkmark \)
Feng and Mi [8]
\(\checkmark \)
\(\checkmark \)
Gul and Shabir [15]
\(\checkmark \)
\(\checkmark \)
Han et al. [18]
\(\checkmark \)
\(\checkmark \)
Jun and Park [24]
\(\checkmark \)
\(\checkmark \)
Liu et al. [35]
\(\checkmark \)
\(\checkmark \)
\(\checkmark \)
Mandal and Ranadive [38]
\(\checkmark \)
\(\checkmark \)
She and He [50]
\(\checkmark \)
\(\checkmark \)
Xu et al. [58]
\(\checkmark \)
\(\checkmark \)
Yang et al. [64]
\(\checkmark \)
\(\checkmark \)
Proposed Method
\(\checkmark \)
\(\checkmark \)
\(\checkmark \)
\(\checkmark \)
\(\checkmark \)
Table 16
Comparison with some existing methods
\(\text {Methods}\)
\(\text {Ranking of alternatives}\)
\(\text {Optimal alternative}\)
Wei et al. [57]
\(S_1 \succeq S_2 \succeq S_3 \succeq S_4 \succeq S_5\)
\(S_1\)
Malik and Shabir [36]
\(S_1 \succeq S_2 \succeq S_3 \succeq S_4 \succeq S_5\)
\(S_1\)
Jana et al. [23]
\(S_1 \succeq S_3 \succeq S_4 \succeq S_2 \succeq S_5\)
\(S_1\)
Gul [13]
\(S_1 \succeq S_2 \succeq S_3 \succeq S_4 \succeq S_5\)
\(S_1\)
Our proposed method
\(S_1 \thickapprox S_4 \succeq S_3 \succeq S_5 \succeq S_2\)
\(S_1, S_4\)

Advantages of the proposed technique

In summary, the advantages of the proposed MCDM method in the context of the BFP\(\delta \)C based OMG-BFRS model are listed as follows:
(1)
In the study of MCDM problems with bipolar fuzzy information, there are many DM approaches based on BFR. However, not all MADM problems can be characterized by a BFR. For this reason, we set forth the method to solve MCDM problems with bipolar fuzzy information based on BFP\(\delta \)C based BFRSs.
 
(2)
If we compare our suggested technique with the methods presented in [47, 10, 11, 33, 35, 38, 49], we observe that these techniques are incompetent to capture bipolarity in the DM process which is an indispensable component of human thinking and behavior.
 
(3)
Fuzzy DM approaches are successfully applied to solve problems with only one-sided information; that is, alternatives are ranked based only on the positive MD of alternatives. By using fuzzy structure to DM, we cannot provide information about the dissatisfaction behavior or degree of alternatives corresponding to different criteria. Thus, we propose BFP\(\delta \)C based OMG-BFRSs model to rank the alternatives.
 

Comparison with some other techniques

In this subsection, we conduct the comparative analysis from qualitative and quantitative aspects with certain existing techniques to demonstrate the effectiveness and superiority of the established DM methodology, and the specific comparison process is as follows.

Qualitative comparison

We compare the characteristics of the established technique and the introduced approaches in [1, 7, 8, 15, 18, 24, 35, 38, 50, 58, 64] from qualitative aspect, and the comparison results are given in Table 15. We conduct qualitative comparison from five features: membership function (MF), non MF (NMF), multi-granulation environment (MGE), covering and ranking of alternatives to illustrate its superiority. From Table 15, it can be observes that the proposed method has all listed characteristics, but the mentioned methods do not have all of them. Thus, the proposed approach is superior to the DM methods under the FS, RS, MGRS environments in many practical DM problems.

Quantitative comparison

We compare our suggested technique with certain existing DM approaches quantitatively by numerical experiments. According to different DM methods proposed in Wei et al. [57], Malik and Shabir [36], Jana et al. [23], we can evaluate the ranking results, which are displayed in Table 16. Also, the ranking results are plotted graphically in Fig. 3.
From 16, we can observe that the ranking order of alternatives of the other schemes is different, mainly due to changes in the DM environment. However, the optimal alternative is the same. This phenomenon is normal in decision-making theory. In general, decision-makers can set different values of the parameters \(\alpha \) and \(\beta \) based on their preferences and actual requirements.

Conclusion and future work

Recent years have witnessed the rising of MGRS, which is a new branch of RS theory. It provides a new theoretical paradigm for solving the complicated problem under the circumstance of multiple binary relations on the universe, and offers a new direction based on multi-granulation analysis for knowledge acquisition and DM. Meanwhile, bipolarity refers to an explicit handling of positive and negative sides of data. A variety of human decisions are based on based on positive and negative or bipolar judgements.
Core content and continuous work of this article are summarized as follows:
(1)
By hybridizing the idea of BFPR with MGRSs and BFS theory, we have initiated BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models. Several significant structural properties of these model have also been carefully investigated.
 
(2)
Furthermore, we have established the interrelationship among BFP\(\delta \)C-BFRS, BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS models.
 
(3)
To illustrate the application of the designed technique with bipolar fuzzified information, we have established a novel approach for solving MCDM problems using the theory of BFP\(\delta \)C-OMG-BFRS model.
 
(4)
The DM methodology and an algorithm of our suggested approach have been presented. Furthermore, a practical example has been provided to demonstrate the importance of the suggested approach.
 
(5)
Finally, a comparative analysis has been made to show the effectiveness of the proposed technique.
 
We anticipate that our research will shed more light on the foundations of the theories of BFS and MGRSs and lead to more robust mathematical approaches to approximate reasoning in soft computing. At the same time, we acknowledge that there remain several avenues for further theoretical research in this perspective. Future work will generally contain the following recommendations:
(1)
The real-world applications of the designed technique in solving a wider variety of selection problems, including TOSIS, VIKOR, ELECTRE, AHP, COPRAS, PROMETHEE, etc.
 
(2)
The attribute reduction of BFP\(\delta \)C-OMG-BFRSs and BFP\(\delta \)C-PMG-BFRSs should be analyzed, and comprehensive experimental investigations, and comparisons with current methodologies should also be verified and addressed.
 
(3)
Further study can be done to establish fruitful algorithms for different kinds of DM problems.
 
(4)
Another direction is to investigate the topological properties and similarity measures of the proposed BFP\(\delta \)C-OMG-BFRS and BFP\(\delta \)C-PMG-BFRS model to establish a concrete platform for future research.
 

Declarations

Conflict of interest

The authors declare no conflict of interest.

Human participants

This article does not contain any studies with human participants performed by any of the authors. Informed consent The authors have read and agreed to submit this version of the manuscript.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Alghamdi MA, Alshehri NO, Akram M (2018) Multi-criteria decision-making methods in bipolar fuzzy environment. Int J Fuzzy Syst 20(6):2057–2064CrossRef Alghamdi MA, Alshehri NO, Akram M (2018) Multi-criteria decision-making methods in bipolar fuzzy environment. Int J Fuzzy Syst 20(6):2057–2064CrossRef
2.
Zurück zum Zitat Ali A, Ali MI, Rehman N (2018) New types of dominance based multi-granulation rough sets and their applications in conflict analysis problems. J Intell Fuzzy Syst 35(3):3859–3871CrossRef Ali A, Ali MI, Rehman N (2018) New types of dominance based multi-granulation rough sets and their applications in conflict analysis problems. J Intell Fuzzy Syst 35(3):3859–3871CrossRef
3.
Zurück zum Zitat Ali G, Akram M, Alcantud JCR (2020) Attributes reductions of bipolar fuzzy relation decision systems. Neural Comput Appl 32(14):10051–10071CrossRef Ali G, Akram M, Alcantud JCR (2020) Attributes reductions of bipolar fuzzy relation decision systems. Neural Comput Appl 32(14):10051–10071CrossRef
4.
Zurück zum Zitat Chen SM, Lin TE, Lee LW (2014) Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency. Inf Sci 259:1–15ADSMathSciNetCrossRef Chen SM, Lin TE, Lee LW (2014) Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency. Inf Sci 259:1–15ADSMathSciNetCrossRef
5.
Zurück zum Zitat Chen H, Li T, Luo C, Hu J (2015) Dominance-based neighborhood rough sets and its attribute reduction. Springer, Cham. Switzerland, pp 89–99 Chen H, Li T, Luo C, Hu J (2015) Dominance-based neighborhood rough sets and its attribute reduction. Springer, Cham. Switzerland, pp 89–99
6.
Zurück zum Zitat Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2–3):191–209CrossRef Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2–3):191–209CrossRef
7.
Zurück zum Zitat Dubois D, Prade H (1992) Putting rough sets and fuzzy sets together. Intell Decision Support 11:203–232CrossRef Dubois D, Prade H (1992) Putting rough sets and fuzzy sets together. Intell Decision Support 11:203–232CrossRef
8.
Zurück zum Zitat Feng T, Mi JS (2016) Variable precision multigranulation decision-theoretic fuzzy rough sets. Knowl-Based Syst 91:93–101ADSCrossRef Feng T, Mi JS (2016) Variable precision multigranulation decision-theoretic fuzzy rough sets. Knowl-Based Syst 91:93–101ADSCrossRef
9.
Zurück zum Zitat Greco S, Matarazzo B, Słowinski R (1999) The use of rough sets and fuzzy sets in MCDM. In: Gal T, Stewart T, Hanne T (eds) Multicriteria decision making. Springer, Boston, pp 397–455CrossRef Greco S, Matarazzo B, Słowinski R (1999) The use of rough sets and fuzzy sets in MCDM. In: Gal T, Stewart T, Hanne T (eds) Multicriteria decision making. Springer, Boston, pp 397–455CrossRef
10.
Zurück zum Zitat Greco S, Matarazzo B, Słowinski R (2000) Fuzzy extension of the rough set approach to multicriteria and multiattribute sorting. In: Fodor J, De Baets B, Perny P (eds) Studies in fuzziness soft computing, vol 51. Physica, Heidelberg, pp 131–151 Greco S, Matarazzo B, Słowinski R (2000) Fuzzy extension of the rough set approach to multicriteria and multiattribute sorting. In: Fodor J, De Baets B, Perny P (eds) Studies in fuzziness soft computing, vol 51. Physica, Heidelberg, pp 131–151
11.
Zurück zum Zitat Greco S, Matarazzo B, Słowinski R (2001) Rough sets theory for multicriteria decision analysis. Eur J Oper Res 129(1):1–47CrossRef Greco S, Matarazzo B, Słowinski R (2001) Rough sets theory for multicriteria decision analysis. Eur J Oper Res 129(1):1–47CrossRef
12.
Zurück zum Zitat Greco S, Matarazzo B, Słowinski R (2002) Rough approximation by dominance relations. Int J Intell Syst 17(2):153–171CrossRef Greco S, Matarazzo B, Słowinski R (2002) Rough approximation by dominance relations. Int J Intell Syst 17(2):153–171CrossRef
13.
Zurück zum Zitat Gul Z (2015) Some bipolar fuzzy aggregations operators and their applications in multicriteria group decision making. Doctoral dissertation, Hazara University Gul Z (2015) Some bipolar fuzzy aggregations operators and their applications in multicriteria group decision making. Doctoral dissertation, Hazara University
14.
Zurück zum Zitat Gul Z (2015) Some bipolar fuzzy aggregations operators and their applications in multicriteria group decision making. M. Phil thesis Gul Z (2015) Some bipolar fuzzy aggregations operators and their applications in multicriteria group decision making. M. Phil thesis
15.
Zurück zum Zitat Gul R, Shabir M (2020) Roughness of a set by \((\alpha ,\beta )\)-indiscernibility of Bipolar fuzzy relation. Comput Appl Math 39(3):1–22MathSciNetCrossRef Gul R, Shabir M (2020) Roughness of a set by \((\alpha ,\beta )\)-indiscernibility of Bipolar fuzzy relation. Comput Appl Math 39(3):1–22MathSciNetCrossRef
16.
Zurück zum Zitat Gul R, Shabir M (2021) \((\alpha , \beta )\)-multi-granulation bipolar fuzzified rough sets and their applications to multi criteria group decision making. J Intell Fuzzy Syst 41(3):1–36 Gul R, Shabir M (2021) \((\alpha , \beta )\)-multi-granulation bipolar fuzzified rough sets and their applications to multi criteria group decision making. J Intell Fuzzy Syst 41(3):1–36
17.
Zurück zum Zitat Gul R, Shabir M, Naeem M (2023) A comprehensive study on \((\alpha , \beta )\)-bipolar fuzzified rough set model based on bipolar fuzzy preference relation and corresponding decision-making applications. Computational and Applied Mathematics 42(7):310MathSciNetCrossRef Gul R, Shabir M, Naeem M (2023) A comprehensive study on \((\alpha , \beta )\)-bipolar fuzzified rough set model based on bipolar fuzzy preference relation and corresponding decision-making applications. Computational and Applied Mathematics 42(7):310MathSciNetCrossRef
18.
Zurück zum Zitat Han Y, Shi P, Chen S (2015) Bipolar-valued rough fuzzy set and its applications to the decision information system. IEEE Trans Fuzzy Syst 23(6):2358–2370CrossRef Han Y, Shi P, Chen S (2015) Bipolar-valued rough fuzzy set and its applications to the decision information system. IEEE Trans Fuzzy Syst 23(6):2358–2370CrossRef
19.
Zurück zum Zitat Hu YC (2016) Pattern classification using grey tolerance rough sets. Kybernetes 45(2):266–281CrossRef Hu YC (2016) Pattern classification using grey tolerance rough sets. Kybernetes 45(2):266–281CrossRef
20.
Zurück zum Zitat Hu YC (2016) Tolerance rough sets for pattern classification using multiple grey single-layer perceptrons. Neurocomputing 179:144–151CrossRef Hu YC (2016) Tolerance rough sets for pattern classification using multiple grey single-layer perceptrons. Neurocomputing 179:144–151CrossRef
21.
Zurück zum Zitat Hu C, Zhang L (2021) Dynamic dominance-based multigranulation rough sets approaches with evolving ordered data. Int J Mach Learn Cybern 12(1):17–38CrossRef Hu C, Zhang L (2021) Dynamic dominance-based multigranulation rough sets approaches with evolving ordered data. Int J Mach Learn Cybern 12(1):17–38CrossRef
22.
Zurück zum Zitat Huang B, Guo CX, Zhuang YL, Li HX, Zhou XZ (2014) Intuitionistic fuzzy multigranulation rough sets. Inf Sci 277:299–320MathSciNetCrossRef Huang B, Guo CX, Zhuang YL, Li HX, Zhou XZ (2014) Intuitionistic fuzzy multigranulation rough sets. Inf Sci 277:299–320MathSciNetCrossRef
23.
Zurück zum Zitat Jana C, Pal M, Wang JQ (2019) Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process. J Ambient Intell Human Comput 10:3533–3549CrossRef Jana C, Pal M, Wang JQ (2019) Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process. J Ambient Intell Human Comput 10:3533–3549CrossRef
24.
Zurück zum Zitat Jun YB, Park CH (2009) Filters of BCH-algebras based on bipolar-valued fuzzy sets. Int Math Forum 4(13):631–643MathSciNet Jun YB, Park CH (2009) Filters of BCH-algebras based on bipolar-valued fuzzy sets. Int Math Forum 4(13):631–643MathSciNet
25.
Zurück zum Zitat Jun YB, Kim HS, Lee KJ (2009) Bipolar fuzzy translations in BCK/BCI-algebras. J Chungcheong Math Soc 22(3):399–408 Jun YB, Kim HS, Lee KJ (2009) Bipolar fuzzy translations in BCK/BCI-algebras. J Chungcheong Math Soc 22(3):399–408
26.
27.
Zurück zum Zitat Kim J, Samanta SK, Lim PK, Lee JG, Hur K (2019) Bipolar fuzzy topological spaces. Ann Fuzzy Math Inform 17(3):205–229MathSciNetCrossRef Kim J, Samanta SK, Lim PK, Lee JG, Hur K (2019) Bipolar fuzzy topological spaces. Ann Fuzzy Math Inform 17(3):205–229MathSciNetCrossRef
28.
Zurück zum Zitat Kong Q, Zhang X, Xu W, Xie S (2020) Attribute reducts of multi-granulation information system. Artif Intell Rev 53(2):1353–1371CrossRef Kong Q, Zhang X, Xu W, Xie S (2020) Attribute reducts of multi-granulation information system. Artif Intell Rev 53(2):1353–1371CrossRef
29.
Zurück zum Zitat Lee KM (2000) Bipolar-valued fuzzy sets and their basic operations: In: Proceedings of the international conference, pp 307–317 Lee KM (2000) Bipolar-valued fuzzy sets and their basic operations: In: Proceedings of the international conference, pp 307–317
30.
Zurück zum Zitat Lee KJ (2009) Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebra. Bull Malays Math Sci Soc 22:361–373MathSciNet Lee KJ (2009) Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebra. Bull Malays Math Sci Soc 22:361–373MathSciNet
31.
Zurück zum Zitat Li M, Chen M, Xu W (2019) Double-quantitative multigranulation decision-theoretic rough fuzzy set model. Int J Mach Learn Cybern 10:3225–3244CrossRef Li M, Chen M, Xu W (2019) Double-quantitative multigranulation decision-theoretic rough fuzzy set model. Int J Mach Learn Cybern 10:3225–3244CrossRef
32.
Zurück zum Zitat Liang J, Wang F, Dang C, Qian Y (2012) An efficient rough feature selection algorithm with a multi-granulation view. Int J Approx Reason 53(6):912–926MathSciNetCrossRef Liang J, Wang F, Dang C, Qian Y (2012) An efficient rough feature selection algorithm with a multi-granulation view. Int J Approx Reason 53(6):912–926MathSciNetCrossRef
33.
Zurück zum Zitat Lin G, Qian Y, Li J (2012) NMGRS: neighborhood-based multigranulation rough sets. Int J Approx Reason 53(7):1080–1093MathSciNetCrossRef Lin G, Qian Y, Li J (2012) NMGRS: neighborhood-based multigranulation rough sets. Int J Approx Reason 53(7):1080–1093MathSciNetCrossRef
34.
Zurück zum Zitat Lin G, Liang J, Qian Y (2015) An information fusion approach by combining multigranulation rough sets and evidence theory. Inf Sci 314:184–199MathSciNetCrossRef Lin G, Liang J, Qian Y (2015) An information fusion approach by combining multigranulation rough sets and evidence theory. Inf Sci 314:184–199MathSciNetCrossRef
35.
Zurück zum Zitat Liu P, Ali A, Rehman N (2019) Multi-granulation fuzzy rough sets based on fuzzy preference relations and their applications. IEEE Access 7:147825–147848CrossRef Liu P, Ali A, Rehman N (2019) Multi-granulation fuzzy rough sets based on fuzzy preference relations and their applications. IEEE Access 7:147825–147848CrossRef
36.
Zurück zum Zitat Malik N, Shabir M (2019) A consensus model based on rough bipolar fuzzy approximations. J Intell Fuzzy Syst 36(4):3461–3470CrossRef Malik N, Shabir M (2019) A consensus model based on rough bipolar fuzzy approximations. J Intell Fuzzy Syst 36(4):3461–3470CrossRef
37.
Zurück zum Zitat Mandal P, Ranadive AS (2018) Multi-granulation bipolar-valued fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes. Soft Comput 22(24):8207–8226CrossRef Mandal P, Ranadive AS (2018) Multi-granulation bipolar-valued fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes. Soft Comput 22(24):8207–8226CrossRef
38.
Zurück zum Zitat Mandal P, Ranadive AS (2019) Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation. Soft Comput 23:85–99CrossRef Mandal P, Ranadive AS (2019) Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation. Soft Comput 23:85–99CrossRef
39.
Zurück zum Zitat Orlovsky S (1993) Decision-making with a fuzzy preference relation. Readings in fuzzy sets for intelligent systems. Morgan Kaufmann, USA, pp 717–723CrossRef Orlovsky S (1993) Decision-making with a fuzzy preference relation. Readings in fuzzy sets for intelligent systems. Morgan Kaufmann, USA, pp 717–723CrossRef
40.
Zurück zum Zitat Pan W, She K, Wei P (2017) Multi-granulation fuzzy preference relation rough set for ordinal decision system. Fuzzy Sets Syst 312:87–108MathSciNetCrossRef Pan W, She K, Wei P (2017) Multi-granulation fuzzy preference relation rough set for ordinal decision system. Fuzzy Sets Syst 312:87–108MathSciNetCrossRef
41.
43.
Zurück zum Zitat Qian YH, Liang JY, Wei W (2010) Pessimistic rough decision. In: Second international workshop on rough sets theory, vol 29. Zhoushan, PR China, pp 440–449 Qian YH, Liang JY, Wei W (2010) Pessimistic rough decision. In: Second international workshop on rough sets theory, vol 29. Zhoushan, PR China, pp 440–449
44.
Zurück zum Zitat Qian Y, Liang J, Dang C (2009) Incomplete multigranulation rough set. IEEE Trans Syst Man Cybern A Syst Hum 40(2):420–431CrossRef Qian Y, Liang J, Dang C (2009) Incomplete multigranulation rough set. IEEE Trans Syst Man Cybern A Syst Hum 40(2):420–431CrossRef
46.
Zurück zum Zitat Qian Y, Zhang H, Sang Y, Liang J (2014) Multigranulation decision-theoretic rough sets. Int J Approx Reason 55(1):225–237MathSciNetCrossRef Qian Y, Zhang H, Sang Y, Liang J (2014) Multigranulation decision-theoretic rough sets. Int J Approx Reason 55(1):225–237MathSciNetCrossRef
47.
Zurück zum Zitat Qian J, Liu C, Yue X (2019) Multigranulation sequential three-way decisions based on multiple thresholds. Int J Approx Reason 105:396–416MathSciNetCrossRef Qian J, Liu C, Yue X (2019) Multigranulation sequential three-way decisions based on multiple thresholds. Int J Approx Reason 105:396–416MathSciNetCrossRef
48.
Zurück zum Zitat Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York
49.
Zurück zum Zitat Shabir M, Shaheen T (2017) A new methodology for fuzzification of rough sets based on \(\alpha \)-indiscernibility. Fuzzy Sets Syst 312:1–16MathSciNetCrossRef Shabir M, Shaheen T (2017) A new methodology for fuzzification of rough sets based on \(\alpha \)-indiscernibility. Fuzzy Sets Syst 312:1–16MathSciNetCrossRef
50.
Zurück zum Zitat She Y, He X (2012) On the structure of the multigranulation rough set model. Knowl-Based Syst 36:81–92CrossRef She Y, He X (2012) On the structure of the multigranulation rough set model. Knowl-Based Syst 36:81–92CrossRef
51.
Zurück zum Zitat She Y, He X, Shi H, Qian Y (2017) A multiple-valued logic approach for multigranulation rough set model. Int J Approx Reason 82:270–284MathSciNetCrossRef She Y, He X, Shi H, Qian Y (2017) A multiple-valued logic approach for multigranulation rough set model. Int J Approx Reason 82:270–284MathSciNetCrossRef
52.
Zurück zum Zitat Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fund Inf 27(2–3):245–253MathSciNet Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fund Inf 27(2–3):245–253MathSciNet
53.
Zurück zum Zitat Slezak D, Ziarko W (2005) The investigation of the Bayesian rough set model. Int J Approx Reason 40(1–2):81–91MathSciNetCrossRef Slezak D, Ziarko W (2005) The investigation of the Bayesian rough set model. Int J Approx Reason 40(1–2):81–91MathSciNetCrossRef
54.
Zurück zum Zitat Sun B, Ma W, Qian Y (2017) Multigranulation fuzzy rough set over two universes and its application to decision making. Knowl-Based Syst 123:61–74CrossRef Sun B, Ma W, Qian Y (2017) Multigranulation fuzzy rough set over two universes and its application to decision making. Knowl-Based Syst 123:61–74CrossRef
55.
Zurück zum Zitat Sun B, Ma W, Chen X, Zhang X (2019) Multigranulation vague rough set over two universes and its application to group decision making. Soft Comput 23:8927–8956CrossRef Sun B, Ma W, Chen X, Zhang X (2019) Multigranulation vague rough set over two universes and its application to group decision making. Soft Comput 23:8927–8956CrossRef
56.
Zurück zum Zitat Wei G, Wei C, Gao H (2018) Multiple attribute decision making with interval-valued bipolar fuzzy information and their application to emerging technology commercialization evaluation. IEEE Access 6:60930–60955CrossRef Wei G, Wei C, Gao H (2018) Multiple attribute decision making with interval-valued bipolar fuzzy information and their application to emerging technology commercialization evaluation. IEEE Access 6:60930–60955CrossRef
57.
Zurück zum Zitat Wei G, Alsaadi FE, Hayat T, Alsaedi A (2018) Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Int J Fuzzy Syst 20:1–12MathSciNetCrossRef Wei G, Alsaadi FE, Hayat T, Alsaedi A (2018) Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Int J Fuzzy Syst 20:1–12MathSciNetCrossRef
58.
Zurück zum Zitat Xu W, Wang Q, Zhang X (2011) Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. Int J Fuzzy Syst 13(4):246–259MathSciNet Xu W, Wang Q, Zhang X (2011) Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. Int J Fuzzy Syst 13(4):246–259MathSciNet
59.
60.
Zurück zum Zitat Xu W, Li W, Zhang X (2017) Generalized multigranulation rough sets and optimal granularity selection. Granular Comput 2(4):271–288CrossRef Xu W, Li W, Zhang X (2017) Generalized multigranulation rough sets and optimal granularity selection. Granular Comput 2(4):271–288CrossRef
61.
Zurück zum Zitat Xue Z, Zhao LP, Zhang M, Sun BX (2020) Three-way decisions based on multi-granulation support intuitionistic fuzzy probabilistic rough sets. J Intell Fuzzy Syst 38:5013–5031CrossRef Xue Z, Zhao LP, Zhang M, Sun BX (2020) Three-way decisions based on multi-granulation support intuitionistic fuzzy probabilistic rough sets. J Intell Fuzzy Syst 38:5013–5031CrossRef
62.
Zurück zum Zitat Yang XB, Song XN, Dou HL, Yang JY (2011) Multi-granulation rough set: from crisp to fuzzy case. Ann Fuzzy Math Inf 1(1):55–70MathSciNet Yang XB, Song XN, Dou HL, Yang JY (2011) Multi-granulation rough set: from crisp to fuzzy case. Ann Fuzzy Math Inf 1(1):55–70MathSciNet
63.
Zurück zum Zitat Yang XB, Qian YH, Yang JY (2012) Hierarchical structures on multigranulation spaces. J Comput Sci Technol 27(6):1169–1183MathSciNetCrossRef Yang XB, Qian YH, Yang JY (2012) Hierarchical structures on multigranulation spaces. J Comput Sci Technol 27(6):1169–1183MathSciNetCrossRef
64.
Zurück zum Zitat Yang HL, Li SG, Wang S, Wang J (2012) Bipolar fuzzy rough set model on two different universes and its application. Knowl-Based Syst 35:94–101CrossRef Yang HL, Li SG, Wang S, Wang J (2012) Bipolar fuzzy rough set model on two different universes and its application. Knowl-Based Syst 35:94–101CrossRef
65.
Zurück zum Zitat Yang HL, Li SG, Guo ZL, Ma CH (2012) Transformation of bipolar fuzzy rough set models. Knowl-Based Syst 27:60–68CrossRef Yang HL, Li SG, Guo ZL, Ma CH (2012) Transformation of bipolar fuzzy rough set models. Knowl-Based Syst 27:60–68CrossRef
66.
Zurück zum Zitat Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 111(1–4):239–259MathSciNetCrossRef Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 111(1–4):239–259MathSciNetCrossRef
67.
Zurück zum Zitat You X, Li J, Wang H (2019) Relative reduction of neighborhood-covering pessimistic multigranulation rough set based on evidence theory. Information 10(11):334CrossRef You X, Li J, Wang H (2019) Relative reduction of neighborhood-covering pessimistic multigranulation rough set based on evidence theory. Information 10(11):334CrossRef
69.
Zurück zum Zitat Zakowski W (1983) Approximations in the space (U, \(\prod \)). Demonstr Math 16(3):761–770 Zakowski W (1983) Approximations in the space (U, \(\prod \)). Demonstr Math 16(3):761–770
70.
Zurück zum Zitat Zhan J, Xu W (2020) Two types of coverings based multigranulation rough fuzzy sets and applications to decision making. Artif Intell Rev 53:167–198 Zhan J, Xu W (2020) Two types of coverings based multigranulation rough fuzzy sets and applications to decision making. Artif Intell Rev 53:167–198
71.
Zurück zum Zitat Zhan J, Zhang X, Yao Y (2020) Covering based multigranulation fuzzy rough sets and corresponding applications. Artif Intell Rev 53:1093–1126CrossRef Zhan J, Zhang X, Yao Y (2020) Covering based multigranulation fuzzy rough sets and corresponding applications. Artif Intell Rev 53:1093–1126CrossRef
72.
Zurück zum Zitat Zhang WR (1994) Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: Proceedings of the industrial fuzzy control and intelligent systems conference, and the NASA joint technology workshop on neural networks and fuzzy logic and fuzzy information processing society biannual conference, San Antonio, TX, USA, pp 305–09 Zhang WR (1994) Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: Proceedings of the industrial fuzzy control and intelligent systems conference, and the NASA joint technology workshop on neural networks and fuzzy logic and fuzzy information processing society biannual conference, San Antonio, TX, USA, pp 305–09
73.
Zurück zum Zitat Zhang X, Miao D, Liu C, Le M (2016) Constructive methods of rough approximation operators and multigranulation rough sets. Knowl-Based Syst 91:114–125CrossRef Zhang X, Miao D, Liu C, Le M (2016) Constructive methods of rough approximation operators and multigranulation rough sets. Knowl-Based Syst 91:114–125CrossRef
74.
Zurück zum Zitat Zhang H, Zhan J, He Y (2019) Multi-granulation hesitant fuzzy rough sets and corresponding applications. Soft Comput 23:13085–13103CrossRef Zhang H, Zhan J, He Y (2019) Multi-granulation hesitant fuzzy rough sets and corresponding applications. Soft Comput 23:13085–13103CrossRef
Metadaten
Titel
Covering-based -multi-granulation bipolar fuzzy rough set model under bipolar fuzzy preference relation with decision-making applications
verfasst von
Rizwan Gul
Muhammad Shabir
Ahmad N. Al-Kenani
Publikationsdatum
05.03.2024
Verlag
Springer International Publishing
Erschienen in
Complex & Intelligent Systems
Print ISSN: 2199-4536
Elektronische ISSN: 2198-6053
DOI
https://doi.org/10.1007/s40747-024-01371-w