Skip to main content
Erschienen in: Metallurgist 7-8/2017

24.11.2017

Creep Deformation of Carbon-Based Cathode Materials for Low-Temperature Aluminum Electrolysis

verfasst von: Wei Wang, Weijie Chen, Wanduo Gu

Erschienen in: Metallurgist | Ausgabe 7-8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The uniaxial-compression creep behavior of semi-graphitic carbon products was investigated using modified Rapoport equipment in a K3AlF6–Na3AlF6–AlF3 and a Na3AlF6–AlF3 system. The stress exponent is low for the K3AlF6–Na3AlF6–AlF3 system in the steady-state creep stage. With an increase in graphitization degree and grain size, the interlayer space and porosity of the tested samples decrease after aluminum electrolysis. A low temperature can suppress carbon-cathode damage. Based on these stress exponents and a microstructural investigation using transmission electron microscopy, it is proposed that dislocation glide is the dominant creep mechanism for the carbon cathode during aluminum electrolysis in the steady-state creep stage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. W. Yan, J. H. Yang, W. X. LI, et al., “Alumina solubility in KF–NaF–AlF3-based low-temperature electrolyte,” Metall. Mater. Trans. B, 42, No. 5, 1065–1070 (2011). H. W. Yan, J. H. Yang, W. X. LI, et al., “Alumina solubility in KF–NaF–AlF3-based low-temperature electrolyte,” Metall. Mater. Trans. B, 42, No. 5, 1065–1070 (2011).
2.
Zurück zum Zitat J. Frazer and J. Thonstad, “Alumina solubility and diffusion coefficient of the dissolved alumina species in low-temperature fluoride electrolytes,” Metall. Mater. Trans. B, 41, No. 3, 543–548 (2010).CrossRef J. Frazer and J. Thonstad, “Alumina solubility and diffusion coefficient of the dissolved alumina species in low-temperature fluoride electrolytes,” Metall. Mater. Trans. B, 41, No. 3, 543–548 (2010).CrossRef
3.
Zurück zum Zitat M. Yuan, S. Kan, Q. Meng, et al., “Effect of LiF and Al2O3 on the physical and chemical characters in elpasolite containing aluminium electrolyte system,” Rare Met. , 30, No. 1, 595–598 (2011).CrossRef M. Yuan, S. Kan, Q. Meng, et al., “Effect of LiF and Al2O3 on the physical and chemical characters in elpasolite containing aluminium electrolyte system,” Rare Met. , 30, No. 1, 595–598 (2011).CrossRef
4.
Zurück zum Zitat A. Zolochevsky, J. G. Hop, T. Foosnaes, et al., “Rapoport–Samoilenko test for cathode carbon materials-II. Swelling with external pressure and effect of creep,” Carbon, 43, No. 6, 1222–1230 (2005).CrossRef A. Zolochevsky, J. G. Hop, T. Foosnaes, et al., “Rapoport–Samoilenko test for cathode carbon materials-II. Swelling with external pressure and effect of creep,” Carbon, 43, No. 6, 1222–1230 (2005).CrossRef
5.
Zurück zum Zitat T. Chen, J. L. Xue, and X. Li, “High-temperature creep deformation and change in porous structure of graphite cathode in aluminum electrolysis process,” Light Met., 123–130 (2014). T. Chen, J. L. Xue, and X. Li, “High-temperature creep deformation and change in porous structure of graphite cathode in aluminum electrolysis process,” Light Met., 123–130 (2014).
6.
Zurück zum Zitat G. V. Arkhipov and Y. S. Gorlanov, “Development of technology for producing a wettable coating on a carbon cathode by electrodeposition,” Light Met., 1367–1372 (2012). G. V. Arkhipov and Y. S. Gorlanov, “Development of technology for producing a wettable coating on a carbon cathode by electrodeposition,” Light Met., 1367–1372 (2012).
7.
Zurück zum Zitat D. Picard, M. Fafard, G. Soucy, et al. “Room temperature long-term creep/ relaxation behaviour of carbon cathode material,” Mater. Sci. Eng., A, 496, No. 1, 366–375 (2008).CrossRef D. Picard, M. Fafard, G. Soucy, et al. “Room temperature long-term creep/ relaxation behaviour of carbon cathode material,” Mater. Sci. Eng., A, 496, No. 1, 366–375 (2008).CrossRef
8.
Zurück zum Zitat A. Zolochevsky, J. G. Hop, G. Servant, et al. “Rapoport–Samoilenko test for cathode carbon materials: I. Experimental results and constitutive modelling,” Carbon, 41, No. 3, 497–505 (2003).CrossRef A. Zolochevsky, J. G. Hop, G. Servant, et al. “Rapoport–Samoilenko test for cathode carbon materials: I. Experimental results and constitutive modelling,” Carbon, 41, No. 3, 497–505 (2003).CrossRef
9.
Zurück zum Zitat Z. Fang, X. L. Wu, J. Yu, et al., “Penetrative and migratory behavior of alkali metal in different binder based TiB2-C composite cathodes,” Trans. Nonferr. Met. Soc, 24, No. 4, 1220–1230 (2014).CrossRef Z. Fang, X. L. Wu, J. Yu, et al., “Penetrative and migratory behavior of alkali metal in different binder based TiB2-C composite cathodes,” Trans. Nonferr. Met. Soc, 24, No. 4, 1220–1230 (2014).CrossRef
10.
Zurück zum Zitat T. Gruber, T. W. Zerda, and M. Gerspacher, “Raman studies of heat-treated carbon blacks,” Carbon, 32, No. 7, 1377–1382 (1994). T. Gruber, T. W. Zerda, and M. Gerspacher, “Raman studies of heat-treated carbon blacks,” Carbon, 32, No. 7, 1377–1382 (1994).
11.
Zurück zum Zitat J. Li, Y. Y. Wu, Y. Q. Lai, et al., “Simulation of thermal and sodium expansion stress in aluminum reduction cells,” J. Cent. South Univ., 15, 198–203 (2008).CrossRef J. Li, Y. Y. Wu, Y. Q. Lai, et al., “Simulation of thermal and sodium expansion stress in aluminum reduction cells,” J. Cent. South Univ., 15, 198–203 (2008).CrossRef
12.
Zurück zum Zitat W. Wang, J. L. Xue, J. Q. Feng, et al., “Creep behaviors of industrial graphitic and graphitized cathodes during modified Rapoport tests,” Light Met., 1053–1057 (2011). W. Wang, J. L. Xue, J. Q. Feng, et al., “Creep behaviors of industrial graphitic and graphitized cathodes during modified Rapoport tests,” Light Met., 1053–1057 (2011).
13.
Zurück zum Zitat Y. H. Zhang, N. X. Feng, J. P. Peng, et al., “Effect of KF additions in Na3AlF6–Al2O3 electrolytes on expansion of cathode blocks,” Light Met., 681–684 (2012). Y. H. Zhang, N. X. Feng, J. P. Peng, et al., “Effect of KF additions in Na3AlF6–Al2O3 electrolytes on expansion of cathode blocks,” Light Met., 681–684 (2012).
14.
Zurück zum Zitat J. L. Xue, Q. S. Liu, and B. S. Li, “Creep deformation in TiB2/C composite cathode materials for aluminum electrolysis,” Light Met., 1023–1027 (2008). J. L. Xue, Q. S. Liu, and B. S. Li, “Creep deformation in TiB2/C composite cathode materials for aluminum electrolysis,” Light Met., 1023–1027 (2008).
15.
Zurück zum Zitat X. Li, J. L. Xue, J. Zhu, et al., “Analysis of porous structures of graphitic cathode materials and the correlation to penetrated sodium,” Light Met., 1319–1324 (2012). X. Li, J. L. Xue, J. Zhu, et al., “Analysis of porous structures of graphitic cathode materials and the correlation to penetrated sodium,” Light Met., 1319–1324 (2012).
16.
Zurück zum Zitat J. L. Xue, L. C. Wu, W. Wang, et al., “Characterization of sodium expansion of industrial graphitic and graphitized cathodes,” Light Met., 849–853 (2010). J. L. Xue, L. C. Wu, W. Wang, et al., “Characterization of sodium expansion of industrial graphitic and graphitized cathodes,” Light Met., 849–853 (2010).
17.
Zurück zum Zitat Q. Y. Lin, T. Q. Li, Z. J. Liu, et al., “High-resolution TEM observations of isolated rhombohedral crystallites in graphite blocks,” Carbon, 50, No. 6, 2369–2371 (2012). Q. Y. Lin, T. Q. Li, Z. J. Liu, et al., “High-resolution TEM observations of isolated rhombohedral crystallites in graphite blocks,” Carbon, 50, No. 6, 2369–2371 (2012).
18.
Zurück zum Zitat F. Kabirian and R. Mahmudi, “Impression creep behavior of a cast AZ91 magnesium alloy,” Mater. Trans. A, 40, No. 1, 116–127 (2009).CrossRef F. Kabirian and R. Mahmudi, “Impression creep behavior of a cast AZ91 magnesium alloy,” Mater. Trans. A, 40, No. 1, 116–127 (2009).CrossRef
19.
Zurück zum Zitat E. G. Zukas and W. V. Green, “High temperature creep of a poco graphite,” Carbon, 10, No. 3, 519–522(1972). E. G. Zukas and W. V. Green, “High temperature creep of a poco graphite,” Carbon, 10, No. 3, 519–522(1972).
20.
Zurück zum Zitat N. Luiggi and M. Gómez, “Rhombohedral graphite: Comparative study of the electronic properties,” J. Mol. Struct.: Theochem, 897, No. 1, 118–128 (2009). N. Luiggi and M. Gómez, “Rhombohedral graphite: Comparative study of the electronic properties,” J. Mol. Struct.: Theochem, 897, No. 1, 118–128 (2009).
21.
Zurück zum Zitat P. Y. Brisson, H. Darmstadt, M. Fafard, et al., “x-Ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells,” Carbon, 44, No. 8, 1438–1447 (2006).CrossRef P. Y. Brisson, H. Darmstadt, M. Fafard, et al., “x-Ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells,” Carbon, 44, No. 8, 1438–1447 (2006).CrossRef
22.
Zurück zum Zitat D. G. Liu, Z. H. Yang, W. X. Li, et al., “Electrochemical intercalation of potassium into graphite in KF melt,” Electrochim. Acta, 55, No. 3, 1013–1018 (2010).CrossRef D. G. Liu, Z. H. Yang, W. X. Li, et al., “Electrochemical intercalation of potassium into graphite in KF melt,” Electrochim. Acta, 55, No. 3, 1013–1018 (2010).CrossRef
23.
Zurück zum Zitat X. G. Lü, Q. Y. Li, Y. Q. Lai, et al., “Digital characterization and mathematic model of sodium penetration into cathode material for aluminum electrolysis,” J. Cent. South. Univ., 16, 96–100 (2009).CrossRef X. G. Lü, Q. Y. Li, Y. Q. Lai, et al., “Digital characterization and mathematic model of sodium penetration into cathode material for aluminum electrolysis,” J. Cent. South. Univ., 16, 96–100 (2009).CrossRef
24.
Zurück zum Zitat M. B. Rapoport and V. N. Samoilenko, “Deformation of cathode blocks in aluminium baths during process of electrolysis,” Tsvet. Met., 30, No. 2, 44–51(1957). M. B. Rapoport and V. N. Samoilenko, “Deformation of cathode blocks in aluminium baths during process of electrolysis,” Tsvet. Met., 30, No. 2, 44–51(1957).
25.
Zurück zum Zitat A. Zolochevsky, J. G. Hop, T. Foosnaes, et al., “Surface exchange of sodium, anisotropy of diffusion and diffusional creep in carbon cathode materials,” Light Met., 745–750 (2005). A. Zolochevsky, J. G. Hop, T. Foosnaes, et al., “Surface exchange of sodium, anisotropy of diffusion and diffusional creep in carbon cathode materials,” Light Met., 745–750 (2005).
Metadaten
Titel
Creep Deformation of Carbon-Based Cathode Materials for Low-Temperature Aluminum Electrolysis
verfasst von
Wei Wang
Weijie Chen
Wanduo Gu
Publikationsdatum
24.11.2017
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 7-8/2017
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-017-0555-0

Weitere Artikel der Ausgabe 7-8/2017

Metallurgist 7-8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.