Skip to main content
Erschienen in: Journal of Polymer Research 7/2016

01.07.2016 | Original Paper

Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals

verfasst von: Liubo Ma, Mingxian Liu, Qi Peng, Yongwang Liu, Binghong Luo, Changren Zhou

Erschienen in: Journal of Polymer Research | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to develop and characterize the nanocomposites using sulfur cross-linked carboxylated styrene-butadiene rubbers (S-xSBR) as the matrix and chitin nanocrystals (CNCs) as nanofillers. The composites’ morphology and properties were examined by light transmittances, fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic mechanical analysis (DMA), thermo gravimetric analyzer (TGA), and tensile properties determination. The addition of CNCs has slight effect on transparency of the composite films. FTIR data confirm the interfacial interactions between CNCs and S-xSBR via hydrogen bonds. CNCs are uniformly dispersed in the matrix from SEM result. The addition of CNCs can significantly improve the tensile strength and modulus both in static and dynamic states. The tensile modulus and tensile strength of S-xSBR/CNCs composites with the 4 wt.% CNCs is 62.5 % and 97.6 % higher than that of pure S-xSBR. The storage modulus, glass transition temperature, and the thermal stability of the composites are higher than those of the neat S-xSBR. The mechanical properties of the composite films are water-responsive, as the swollen samples exhibit obviously decreased strength and modulus. The greatest mechanical contrast is shown in the S-xSBR/CNCs composites with 2 wt.% CNCs loading whose tensile modulus decrease from 60.4 to 6.1 MPa after swelling equilibrium. The significant reinforcement effect of CNCs on S-xSBR is attributed to the unique structure of CNCs and the interfacial interactions in the composite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899–904CrossRef Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899–904CrossRef
2.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
3.
Zurück zum Zitat Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38(22):9161–9170CrossRef Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38(22):9161–9170CrossRef
4.
Zurück zum Zitat Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A Starch nanocrystal fillers in an acrylic polymer matrix. In: Macromolecular Symposia, 2005. vol 1. Wiley Online Library, pp 95–104 Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A Starch nanocrystal fillers in an acrylic polymer matrix. In: Macromolecular Symposia, 2005. vol 1. Wiley Online Library, pp 95–104
5.
Zurück zum Zitat Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68(1):146–158CrossRef Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68(1):146–158CrossRef
6.
Zurück zum Zitat Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3):657–665CrossRef Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3):657–665CrossRef
7.
Zurück zum Zitat Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34(19):6527–6530CrossRef Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34(19):6527–6530CrossRef
8.
Zurück zum Zitat Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717CrossRef Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717CrossRef
9.
Zurück zum Zitat Uddin AJ, Fujie M, Sembo S, Gotoh Y (2012) Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr Polym 87(1):799–805CrossRef Uddin AJ, Fujie M, Sembo S, Gotoh Y (2012) Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr Polym 87(1):799–805CrossRef
10.
Zurück zum Zitat Wang J, Wang Z, Li J, Wang B, Liu J, Chen P, Miao M, Gu Q (2012) Chitin nanocrystals grafted with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydr Polym 87(1):784–789CrossRef Wang J, Wang Z, Li J, Wang B, Liu J, Chen P, Miao M, Gu Q (2012) Chitin nanocrystals grafted with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydr Polym 87(1):784–789CrossRef
11.
Zurück zum Zitat Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15CrossRef Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15CrossRef
12.
Zurück zum Zitat Liu M, Peng Q, Luo B, Zhou C (2015) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206CrossRef Liu M, Peng Q, Luo B, Zhou C (2015) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206CrossRef
13.
Zurück zum Zitat Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef
14.
Zurück zum Zitat Zeng J-B, He Y-S, Li S-L, Wang Y-Z (2011) Chitin whiskers: an overview. Biomacromolecules 13(1):1–11CrossRef Zeng J-B, He Y-S, Li S-L, Wang Y-Z (2011) Chitin whiskers: an overview. Biomacromolecules 13(1):1–11CrossRef
15.
Zurück zum Zitat Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRef
16.
Zurück zum Zitat Marchessault RH, Morehead FF, Walter NM (1959) Liquid Crystal Systems from Fibrillar polysaccharides. Nature 184(4686):632–633CrossRef Marchessault RH, Morehead FF, Walter NM (1959) Liquid Crystal Systems from Fibrillar polysaccharides. Nature 184(4686):632–633CrossRef
17.
Zurück zum Zitat Liu M, Huang J, Luo B, Zhou C (2015) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31CrossRef Liu M, Huang J, Luo B, Zhou C (2015) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31CrossRef
18.
Zurück zum Zitat Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y, Lu A, Zhang L (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules 16(11):3499–3507CrossRef Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y, Lu A, Zhang L (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules 16(11):3499–3507CrossRef
19.
Zurück zum Zitat Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370–1374CrossRef Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370–1374CrossRef
20.
Zurück zum Zitat Dagnon KL, Shanmuganathan K, Weder C, Rowan SJ (2012) Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices. Macromolecules 45(11):4707–4715CrossRef Dagnon KL, Shanmuganathan K, Weder C, Rowan SJ (2012) Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices. Macromolecules 45(11):4707–4715CrossRef
21.
Zurück zum Zitat Florjanczyk Z, Debowski M, Wolak A, Malesa M, Plecha J (2007) Dispersions of organically modified boehmite particles and a carboxylated styrene-butadiene latix: a simple way to nanocomposites. J Appl Polym Sci 105(1):80–88CrossRef Florjanczyk Z, Debowski M, Wolak A, Malesa M, Plecha J (2007) Dispersions of organically modified boehmite particles and a carboxylated styrene-butadiene latix: a simple way to nanocomposites. J Appl Polym Sci 105(1):80–88CrossRef
22.
Zurück zum Zitat Cao X, Xu C, Liu Y, Chen Y (2013) Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites. Carbohydr Polym 92(1):69–76CrossRef Cao X, Xu C, Liu Y, Chen Y (2013) Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites. Carbohydr Polym 92(1):69–76CrossRef
23.
Zurück zum Zitat Abdollahi M, Rahmatpour A, Khanli HH (2007) Structure and mechanical properties of carboxylated styrene-butadiene rubber (XSBR)/pristine clay nanocomposites. E-Polymers 7(1):1753–1760b Abdollahi M, Rahmatpour A, Khanli HH (2007) Structure and mechanical properties of carboxylated styrene-butadiene rubber (XSBR)/pristine clay nanocomposites. E-Polymers 7(1):1753–1760b
24.
Zurück zum Zitat Alimardani M, Abbassi-Sourki F, Bakhshandeh GR (2012) Preparation and characterization of carboxylated styrene butadiene rubber (XSBR)/multiwall carbon nanotubes (MWCNTs) nanocomposites. Iran Polym J 21(11):809–820CrossRef Alimardani M, Abbassi-Sourki F, Bakhshandeh GR (2012) Preparation and characterization of carboxylated styrene butadiene rubber (XSBR)/multiwall carbon nanotubes (MWCNTs) nanocomposites. Iran Polym J 21(11):809–820CrossRef
25.
Zurück zum Zitat Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876CrossRef Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876CrossRef
26.
Zurück zum Zitat Lu Y, Sun Q, She X, Xia Y, Liu Y, Li J, Yang D (2013) Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydr Polym 98(2):1497–1504CrossRef Lu Y, Sun Q, She X, Xia Y, Liu Y, Li J, Yang D (2013) Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydr Polym 98(2):1497–1504CrossRef
27.
Zurück zum Zitat Goodrich JD, Winter WT (2007) A-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8(1):252–257CrossRef Goodrich JD, Winter WT (2007) A-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8(1):252–257CrossRef
28.
Zurück zum Zitat De Sarkar M, De P, Bhowmick A (2000) Diimide reduction of carboxylated styrene–butadiene rubber in latex stage. Polymer 41(3):907–915CrossRef De Sarkar M, De P, Bhowmick A (2000) Diimide reduction of carboxylated styrene–butadiene rubber in latex stage. Polymer 41(3):907–915CrossRef
29.
Zurück zum Zitat Cho Y-W, Jang J, Park CR, Ko S-W (2000) Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules 1(4):609–614CrossRef Cho Y-W, Jang J, Park CR, Ko S-W (2000) Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules 1(4):609–614CrossRef
30.
Zurück zum Zitat Haines PJ (2002) Principles of thermal analysis and calorimetry. Royal society of chemistry, London Haines PJ (2002) Principles of thermal analysis and calorimetry. Royal society of chemistry, London
31.
Zurück zum Zitat Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205CrossRef Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205CrossRef
32.
Zurück zum Zitat Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393(1):1–11CrossRef Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393(1):1–11CrossRef
Metadaten
Titel
Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals
verfasst von
Liubo Ma
Mingxian Liu
Qi Peng
Yongwang Liu
Binghong Luo
Changren Zhou
Publikationsdatum
01.07.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 7/2016
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1025-2

Weitere Artikel der Ausgabe 7/2016

Journal of Polymer Research 7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.