Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Data-Driven Approaches for Prediction and Classification of Building Energy Consumption

verfasst von : Yixuan Wei, Xingxing Zhang, Yong Shi

Erschienen in: Data-driven Analytics for Sustainable Buildings and Cities

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A recent surge of interest in the building energy consumption has generated a tremendous amount of energy data, which boosts the data-driven algorithms for broad application throughout industry. This chapter reviews the prevailing data-driven approaches used in building energy analysis under different archetypes and granularities including those for prediction (artificial neural networks, support vector machines, statistical regression, decision tree and genetic algorithm) and those for classification (K-mean clustering, self-organizing map and hierarchy clustering). To be specific, we introduce the fundamental concepts and major technical features of each approach, together summarizing its current R&D status and practical applications while pointing out existing challenges in their development for prediction and classification of building energy consumption. The review results demonstrate that the data-driven approaches, although they are constructed based on less physical information, have well addressed a large variety of building energy related applications, such as load forecasting and prediction, energy pattern profiling, regional energy-consumption mapping, benchmarking for building stocks, global retrofit strategies and guideline making etc. Significantly, this review refines a few key tasks for modification of the data-driven approaches in the contexts of application to building energy analysis. The conclusions drawn in this review could facilitate future micro-scale changes of energy use for a particular dwelling through appropriate retrofit in building envelop and inclusion of renewable energy technologies. They also pave an avenue to explore potential in macro-scale energy-reduction with consideration of customer demands. All these will be useful to establish a better long-term strategy for urban sustainability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alhamazani K, Ranjan R, Mitra K et al (2015) An overview of the commercial cloud monitoring tools: research dimensions, design issues, and state-of-the-art. Computing 97(4):357–377CrossRef Alhamazani K, Ranjan R, Mitra K et al (2015) An overview of the commercial cloud monitoring tools: research dimensions, design issues, and state-of-the-art. Computing 97(4):357–377CrossRef
Zurück zum Zitat Al-Homoud MS (2001) Computer-aided building energy analysis techniques. Build Environ 36(4):421–433CrossRef Al-Homoud MS (2001) Computer-aided building energy analysis techniques. Build Environ 36(4):421–433CrossRef
Zurück zum Zitat Amjady N (2001) Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans Power Syst 16(3):498–505CrossRef Amjady N (2001) Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans Power Syst 16(3):498–505CrossRef
Zurück zum Zitat An N, Zhao W, Wang J et al (2013) Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 49(1):279–288CrossRef An N, Zhao W, Wang J et al (2013) Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 49(1):279–288CrossRef
Zurück zum Zitat Arambula Lara R, Cappelletti F, Romagnoni P et al (2014) Selection of representative buildings through preliminary cluster analysis Arambula Lara R, Cappelletti F, Romagnoni P et al (2014) Selection of representative buildings through preliminary cluster analysis
Zurück zum Zitat Asadi E, Silva MGD, Antunes CH et al (2014) Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build 81(na):na Asadi E, Silva MGD, Antunes CH et al (2014) Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build 81(na):na
Zurück zum Zitat Aydinalp M, Ugursal VI, Fung AS (2002) Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Appl Energy 71(2):87–110CrossRef Aydinalp M, Ugursal VI, Fung AS (2002) Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Appl Energy 71(2):87–110CrossRef
Zurück zum Zitat Aydinalp-Koksal M, Ugursal VI (2008) Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl Energy 85(4):271–296CrossRef Aydinalp-Koksal M, Ugursal VI (2008) Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl Energy 85(4):271–296CrossRef
Zurück zum Zitat Azadeh A, Ghaderi SF, Tarverdian S et al (2007) Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Appl Math Comput 186(2):1731–1741 Azadeh A, Ghaderi SF, Tarverdian S et al (2007) Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Appl Math Comput 186(2):1731–1741
Zurück zum Zitat Barnaby CS, Spitler JD (2005) Development of the residential load factor method for heating and cooling load calculations. ASHRAE Trans 111:291–307 Barnaby CS, Spitler JD (2005) Development of the residential load factor method for heating and cooling load calculations. ASHRAE Trans 111:291–307
Zurück zum Zitat Beyer HG (2000) Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Comput Methods Appl Mech Eng 186(2–4):239–267CrossRef Beyer HG (2000) Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Comput Methods Appl Mech Eng 186(2–4):239–267CrossRef
Zurück zum Zitat Bojić M, Lukić N (2000) Numerical evaluation of solar-energy use through passive heating of weekend houses in Yugoslavia. Renew Energy 20(2):207–222CrossRef Bojić M, Lukić N (2000) Numerical evaluation of solar-energy use through passive heating of weekend houses in Yugoslavia. Renew Energy 20(2):207–222CrossRef
Zurück zum Zitat Canyurt OE, Ozturk HK, Hepbasli A et al (2005) Estimating the Turkish residential–commercial energy output based on genetic algorithm (GA) approaches. Energy Policy 33(8):1011–1019CrossRef Canyurt OE, Ozturk HK, Hepbasli A et al (2005) Estimating the Turkish residential–commercial energy output based on genetic algorithm (GA) approaches. Energy Policy 33(8):1011–1019CrossRef
Zurück zum Zitat Caputo P, Costa G, Ferrari S (2013) A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy 55(249):261–270CrossRef Caputo P, Costa G, Ferrari S (2013) A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy 55(249):261–270CrossRef
Zurück zum Zitat Chung W, Hui YV, Lam YM (2005) Benchmarking the energy efficiency of commercial buildings. Appl Energy 83(1):1–14CrossRef Chung W, Hui YV, Lam YM (2005) Benchmarking the energy efficiency of commercial buildings. Appl Energy 83(1):1–14CrossRef
Zurück zum Zitat Dong B, Cao C, Lee SE (2005) Applying support vector machines to predict building energy consumption in tropical region. Energy Build 37(5):545–553CrossRef Dong B, Cao C, Lee SE (2005) Applying support vector machines to predict building energy consumption in tropical region. Energy Build 37(5):545–553CrossRef
Zurück zum Zitat Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57CrossRef Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57CrossRef
Zurück zum Zitat Efron B, Tibshirani R (1993) An introduction to bootstrap. Chapman & Hall, New YorkCrossRef Efron B, Tibshirani R (1993) An introduction to bootstrap. Chapman & Hall, New YorkCrossRef
Zurück zum Zitat Farahbakhsh H, Ugursal VI, Fung AS (1998) A residential end-use energy consumption model for Canada. Int J Energy Res 22(13):1133–1143CrossRef Farahbakhsh H, Ugursal VI, Fung AS (1998) A residential end-use energy consumption model for Canada. Int J Energy Res 22(13):1133–1143CrossRef
Zurück zum Zitat Fonseca JA, Schlueter A (2015) Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl Energy 142:247–265 Fonseca JA, Schlueter A (2015) Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl Energy 142:247–265
Zurück zum Zitat Goldberg DE (1986) The genetic algorithm approach: why, how, and what next? In: Adaptive and learning systems. Springer US, pp 247–253. Goldberg DE (1986) The genetic algorithm approach: why, how, and what next? In: Adaptive and learning systems. Springer US, pp 247–253.
Zurück zum Zitat Heidarinejad M, Dahlhausen M, Mcmahon S et al (2014) Cluster analysis of simulated energy use for LEED certified U.S. office buildings. Energy Build 85:86–97 Heidarinejad M, Dahlhausen M, Mcmahon S et al (2014) Cluster analysis of simulated energy use for LEED certified U.S. office buildings. Energy Build 85:86–97
Zurück zum Zitat Hong T, Le Y, Hill D et al (2014) Data and analytics to inform energy retrofit of high performance buildings. Appl Energy 126(C):90–106 Hong T, Le Y, Hill D et al (2014) Data and analytics to inform energy retrofit of high performance buildings. Appl Energy 126(C):90–106
Zurück zum Zitat Howard B, Parshall L, Thompson J et al (2011) Spatial distribution of urban building energy consumption by end use. Energy Build 45:141–151CrossRef Howard B, Parshall L, Thompson J et al (2011) Spatial distribution of urban building energy consumption by end use. Energy Build 45:141–151CrossRef
Zurück zum Zitat Huang YJ (2000) A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire US building stock. Escholarship University of California Huang YJ (2000) A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire US building stock. Escholarship University of California
Zurück zum Zitat ISO (2013) ISO Standard 12655: energy performance of buildings—presentation of real energy use of buildings ISO (2013) ISO Standard 12655: energy performance of buildings—presentation of real energy use of buildings
Zurück zum Zitat Jones P, Patterson J, Lannon S (2007) Modelling the built environment at an urban scale—energy and health impacts in relation to housing. Landsc Urban Plan 83(1):39–49CrossRef Jones P, Patterson J, Lannon S (2007) Modelling the built environment at an urban scale—energy and health impacts in relation to housing. Landsc Urban Plan 83(1):39–49CrossRef
Zurück zum Zitat Juan YK et al (2009) GA-based decision support system for housing condition assessment and refurbishment strategies. Autom Construct 18(4):394–401 Juan YK et al (2009) GA-based decision support system for housing condition assessment and refurbishment strategies. Autom Construct 18(4):394–401
Zurück zum Zitat Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5(4):373–401CrossRef Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5(4):373–401CrossRef
Zurück zum Zitat Kalogirou SA, Bojic M (2000) Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy 25(5):479–491CrossRef Kalogirou SA, Bojic M (2000) Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy 25(5):479–491CrossRef
Zurück zum Zitat Kang Z, Jin M, Spanos CJ (2014) Modeling of end-use energy profile: an appliance-data-driven stochastic approach. Statistics 5382–5388 Kang Z, Jin M, Spanos CJ (2014) Modeling of end-use energy profile: an appliance-data-driven stochastic approach. Statistics 5382–5388
Zurück zum Zitat Kuo WJ, Chang RF, Chen DR et al (2001) Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images. Breast Cancer Res Treat 66(1):51CrossRef Kuo WJ, Chang RF, Chen DR et al (2001) Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images. Breast Cancer Res Treat 66(1):51CrossRef
Zurück zum Zitat Lannon S, Georgakaki A, Macdonald S (2013) Modelling urban scale retrofit, pathways to 2050 low carbon residential building stock. Ibpsa Lannon S, Georgakaki A, Macdonald S (2013) Modelling urban scale retrofit, pathways to 2050 low carbon residential building stock. Ibpsa
Zurück zum Zitat Larivière I, Lafrance G (1999) Modelling the electricity consumption of cities: effect of urban density. Energy Econ 21(1):53–66 Larivière I, Lafrance G (1999) Modelling the electricity consumption of cities: effect of urban density. Energy Econ 21(1):53–66
Zurück zum Zitat Li K, Su H (2010) Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system. Energy Build 42(11):2070–2076CrossRef Li K, Su H (2010) Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system. Energy Build 42(11):2070–2076CrossRef
Zurück zum Zitat Li Q, Meng Q, Cai J et al (2009a) Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks. Energy Convers Manage 50(1):90–96CrossRef Li Q, Meng Q, Cai J et al (2009a) Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks. Energy Convers Manage 50(1):90–96CrossRef
Zurück zum Zitat Li Q, Meng Q, Cai J et al (2009b) Applying support vector machine to predict hourly cooling load in the building. Appl Energy 86(10):2249–2256CrossRef Li Q, Meng Q, Cai J et al (2009b) Applying support vector machine to predict hourly cooling load in the building. Appl Energy 86(10):2249–2256CrossRef
Zurück zum Zitat Li Z, Han Y, Xu P (2014) Methods for benchmarking building energy consumption against its past or intended performance: an overview. Appl Energy 124(7):325–334CrossRef Li Z, Han Y, Xu P (2014) Methods for benchmarking building energy consumption against its past or intended performance: an overview. Appl Energy 124(7):325–334CrossRef
Zurück zum Zitat Li Z, Huang G (2013) Re-evaluation of building cooling load prediction models for use in humid subtropical area. Energy Build 62(3):442–449 Li Z, Huang G (2013) Re-evaluation of building cooling load prediction models for use in humid subtropical area. Energy Build 62(3):442–449
Zurück zum Zitat Li X, Deng Y, Ding L et al (2010) Building cooling load forecasting using fuzzy support vector machine and fuzzy C-mean clustering[C]. In: International conference on computer and communication technologies in agriculture engineering (CCTAE 2010), vol 2010, pp 438–441 Li X, Deng Y, Ding L et al (2010) Building cooling load forecasting using fuzzy support vector machine and fuzzy C-mean clustering[C]. In: International conference on computer and communication technologies in agriculture engineering (CCTAE 2010), vol 2010, pp 438–441
Zurück zum Zitat Magoules F, Zhao HX (2016) Data mining and machine learning in building energy analysis. Wiley Magoules F, Zhao HX (2016) Data mining and machine learning in building energy analysis. Wiley
Zurück zum Zitat Mastrucci A, Baume O, Stazi F et al (2014) Estimating energy savings for the residential building stock of an entire city: a GIS-based statistical downscaling approach applied to Rotterdam. Energy Build 75(2):358–367CrossRef Mastrucci A, Baume O, Stazi F et al (2014) Estimating energy savings for the residential building stock of an entire city: a GIS-based statistical downscaling approach applied to Rotterdam. Energy Build 75(2):358–367CrossRef
Zurück zum Zitat Mathew PA, Dunn LN, Sohn MD et al (2015) Big-data for building energy performance: lessons from assembling a very large national database of building energy use. Appl Energy 140:85–93 CrossRef Mathew PA, Dunn LN, Sohn MD et al (2015) Big-data for building energy performance: lessons from assembling a very large national database of building energy use. Appl Energy 140:85–93 CrossRef
Zurück zum Zitat Mathieu JL, Price PN, Kiliccote S, Piette MA (2011) Quantifying changes in building electricity use, with application to demand response. IEEE Trans Smart Grid 2:507–518CrossRef Mathieu JL, Price PN, Kiliccote S, Piette MA (2011) Quantifying changes in building electricity use, with application to demand response. IEEE Trans Smart Grid 2:507–518CrossRef
Zurück zum Zitat Mejri O, Barrio EPD, Ghrab-Morcos N (2011) Energy performance assessment of occupied buildings using model identification techniques. Energy Build 43(2):285–299CrossRef Mejri O, Barrio EPD, Ghrab-Morcos N (2011) Energy performance assessment of occupied buildings using model identification techniques. Energy Build 43(2):285–299CrossRef
Zurück zum Zitat Neto AH, Fiorelli FAS (2008) Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build 40(12):2169–2176CrossRef Neto AH, Fiorelli FAS (2008) Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build 40(12):2169–2176CrossRef
Zurück zum Zitat Nikolaidis Y, Pilavachi PA, Chletsis A (2009) Economic evaluation of energy saving measures in a common type of Greek building. Appl Energy 86(12):2550–2559CrossRef Nikolaidis Y, Pilavachi PA, Chletsis A (2009) Economic evaluation of energy saving measures in a common type of Greek building. Appl Energy 86(12):2550–2559CrossRef
Zurück zum Zitat Nikolaou T, Kolokotsa D, Stavrakakis G (2011) Review on methodologies for energy benchmarking, rating and classification of buildings. Adv Build Energy Res 5(1):53–70CrossRef Nikolaou T, Kolokotsa D, Stavrakakis G (2011) Review on methodologies for energy benchmarking, rating and classification of buildings. Adv Build Energy Res 5(1):53–70CrossRef
Zurück zum Zitat Nikolaou TG, Kolokotsa DS, Stavrakakis GS et al (2012) On the application of clustering techniques for office buildings’ energy and thermal comfort classification. IEEE Trans Smart Grid 3(4):2196–2210CrossRef Nikolaou TG, Kolokotsa DS, Stavrakakis GS et al (2012) On the application of clustering techniques for office buildings’ energy and thermal comfort classification. IEEE Trans Smart Grid 3(4):2196–2210CrossRef
Zurück zum Zitat Olofsson T, Andersson S (2002) Overall heat loss coefficient and domestic energy gain factor for single-family buildings. Build Environ 37(11):1019–1026CrossRef Olofsson T, Andersson S (2002) Overall heat loss coefficient and domestic energy gain factor for single-family buildings. Build Environ 37(11):1019–1026CrossRef
Zurück zum Zitat Panapakidis IP, Papadopoulos TA, Christoforidis GC et al (2014) Pattern recognition algorithms for electricity load curve analysis of buildings. Energy Build 73(2):137–145CrossRef Panapakidis IP, Papadopoulos TA, Christoforidis GC et al (2014) Pattern recognition algorithms for electricity load curve analysis of buildings. Energy Build 73(2):137–145CrossRef
Zurück zum Zitat Park HS, Lee M, Kang H et al (2016) Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques. Appl Energy 173:225–237CrossRef Park HS, Lee M, Kang H et al (2016) Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques. Appl Energy 173:225–237CrossRef
Zurück zum Zitat Paudel S, Nguyen PH, Kling WL et al (2015) Support vector machine in prediction of building energy demand using pseudo dynamic approach. Comput Sci Paudel S, Nguyen PH, Kling WL et al (2015) Support vector machine in prediction of building energy demand using pseudo dynamic approach. Comput Sci
Zurück zum Zitat Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information
Zurück zum Zitat Perino M, Tardioli G, Kerrigan R et al (2015) Data driven approaches for prediction of building energy consumption at urban level. Energy Proc 78:3378–3383CrossRef Perino M, Tardioli G, Kerrigan R et al (2015) Data driven approaches for prediction of building energy consumption at urban level. Energy Proc 78:3378–3383CrossRef
Zurück zum Zitat Quinlan JR (1986) Induction of decision trees machine learning. In: Data: goals and general description of the IN L.EN System, pp 257–264 Quinlan JR (1986) Induction of decision trees machine learning. In: Data: goals and general description of the IN L.EN System, pp 257–264
Zurück zum Zitat Sadeghi H, Zolfaghari M, Heydarizade M (2011) Estimation of electricity demand in residential sector using genetic algorithm approach Sadeghi H, Zolfaghari M, Heydarizade M (2011) Estimation of electricity demand in residential sector using genetic algorithm approach
Zurück zum Zitat Santamouris M, Mihalakakou G, Patargias P et al (2007) Using intelligent clustering techniques to classify the energy performance of school buildings. Energy Build 39(1):45–51CrossRef Santamouris M, Mihalakakou G, Patargias P et al (2007) Using intelligent clustering techniques to classify the energy performance of school buildings. Energy Build 39(1):45–51CrossRef
Zurück zum Zitat Setiawan A, Koprinska I, Agelidis VG (2009) Very short-term electricity load demand forecasting using support vector regression. In: International joint conference on neural networks, IJCNN 2009, Atlanta, Georgia, USA, 14–19 June. DBLP, pp 2888–2894 Setiawan A, Koprinska I, Agelidis VG (2009) Very short-term electricity load demand forecasting using support vector regression. In: International joint conference on neural networks, IJCNN 2009, Atlanta, Georgia, USA, 14–19 June. DBLP, pp 2888–2894
Zurück zum Zitat Shimoda Y, Fujii T, Morikawa T et al (2004) Residential end-use energy simulation at city scale. Build Environ 39(8):959–967CrossRef Shimoda Y, Fujii T, Morikawa T et al (2004) Residential end-use energy simulation at city scale. Build Environ 39(8):959–967CrossRef
Zurück zum Zitat Sides J (2014) The victory lab: the secret science of winning campaigns. Public Opin Q 78(S1):363–364CrossRef Sides J (2014) The victory lab: the secret science of winning campaigns. Public Opin Q 78(S1):363–364CrossRef
Zurück zum Zitat Sözen A, Arcaklioglu E (2007) Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey. Energy Policy 35(10):4981–4992CrossRef Sözen A, Arcaklioglu E (2007) Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey. Energy Policy 35(10):4981–4992CrossRef
Zurück zum Zitat Swan LG, Ugursal VI (2009) Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sustain Energy Rev 13(8):1819–1835CrossRef Swan LG, Ugursal VI (2009) Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sustain Energy Rev 13(8):1819–1835CrossRef
Zurück zum Zitat Tiedemann KH (2007) Using conditional demand analysis to estimate residential energy use and energy savings. In: Proceedings of the Cdeee Tiedemann KH (2007) Using conditional demand analysis to estimate residential energy use and energy savings. In: Proceedings of the Cdeee
Zurück zum Zitat Tsekouras GJ, Hatziargyriou ND, Dialynas EN (2007) Two-stage pattern recognition of load curves for classification of electricity customers. IEEE Trans Power Syst 22(3):1120–1128CrossRef Tsekouras GJ, Hatziargyriou ND, Dialynas EN (2007) Two-stage pattern recognition of load curves for classification of electricity customers. IEEE Trans Power Syst 22(3):1120–1128CrossRef
Zurück zum Zitat Tso GKF, Yau KKW (2007) Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32(9):1761–1768CrossRef Tso GKF, Yau KKW (2007) Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32(9):1761–1768CrossRef
Zurück zum Zitat Vapnik V, Golowich SE, Smola A (1996) Support Vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287 Vapnik V, Golowich SE, Smola A (1996) Support Vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287
Zurück zum Zitat Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586CrossRef Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586CrossRef
Zurück zum Zitat Wang E (2015) Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach. Appl Energy 146:92–103CrossRef Wang E (2015) Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach. Appl Energy 146:92–103CrossRef
Zurück zum Zitat Wauman B, Breesch H, Saelens D (2013) Evaluation of the accuracy of the implementation of dynamic effects in the quasi steady-state calculation method for school buildings. Energy Build 65(10):173–184CrossRef Wauman B, Breesch H, Saelens D (2013) Evaluation of the accuracy of the implementation of dynamic effects in the quasi steady-state calculation method for school buildings. Energy Build 65(10):173–184CrossRef
Zurück zum Zitat Xiao H, Wei Q, Jiang Y (2012) The reality and statistical distribution of energy consumption in office buildings in China. Energy Build 50(50):259–265CrossRef Xiao H, Wei Q, Jiang Y (2012) The reality and statistical distribution of energy consumption in office buildings in China. Energy Build 50(50):259–265CrossRef
Zurück zum Zitat Yalcintas M (2006) An energy benchmarking model based on artificial neural network method with a case example for tropical climates. Int J Energy Res 30(14):1158–1174CrossRef Yalcintas M (2006) An energy benchmarking model based on artificial neural network method with a case example for tropical climates. Int J Energy Res 30(14):1158–1174CrossRef
Zurück zum Zitat Yalcintas M (2008) Energy-savings predictions for building-equipment retrofits. Energy Build 40(12):2111–2120CrossRef Yalcintas M (2008) Energy-savings predictions for building-equipment retrofits. Energy Build 40(12):2111–2120CrossRef
Zurück zum Zitat Yalcintas M, Ozturk UA (2006) An energy benchmarking model based on artificial neural network method utilizing US Commercial Buildings Energy Consumption Survey (CBECS) database. Int J Energy Res 412–421 Yalcintas M, Ozturk UA (2006) An energy benchmarking model based on artificial neural network method utilizing US Commercial Buildings Energy Consumption Survey (CBECS) database. Int J Energy Res 412–421
Zurück zum Zitat Yamaguchi Y, Shimoda Y, Mizuno M (2007) Proposal of a modeling approach considering urban form for evaluation of city level energy management. Energy Build 39(5):580–592CrossRef Yamaguchi Y, Shimoda Y, Mizuno M (2007) Proposal of a modeling approach considering urban form for evaluation of city level energy management. Energy Build 39(5):580–592CrossRef
Zurück zum Zitat Yan CW, Yao J (2010) Application of ANN for the prediction of building energy consumption at different climate zones with HDD and CDD. In: International conference on future computer and communication. IEEE, pp V3-286–V3-289 Yan CW, Yao J (2010) Application of ANN for the prediction of building energy consumption at different climate zones with HDD and CDD. In: International conference on future computer and communication. IEEE, pp V3-286–V3-289
Zurück zum Zitat Yang J, Rivard H, Zmeureanu R (2005) On-line building energy prediction using adaptive artificial neural networks. Energy Build 37(12):1250–1259CrossRef Yang J, Rivard H, Zmeureanu R (2005) On-line building energy prediction using adaptive artificial neural networks. Energy Build 37(12):1250–1259CrossRef
Zurück zum Zitat Yezioro A, Dong B, Leite F (2008) An applied artificial intelligence approach towards assessing building performance simulation tools. Energy Build 40(4):612–620CrossRef Yezioro A, Dong B, Leite F (2008) An applied artificial intelligence approach towards assessing building performance simulation tools. Energy Build 40(4):612–620CrossRef
Zurück zum Zitat Yokoyama R, Wakui T, Satake R (2009) Prediction of energy demands using neural network with model identification by global optimization. Energy Convers Manage 50(2):319–327CrossRef Yokoyama R, Wakui T, Satake R (2009) Prediction of energy demands using neural network with model identification by global optimization. Energy Convers Manage 50(2):319–327CrossRef
Zurück zum Zitat Yu Z, Haghighat F, Fung BCM et al (2010) A decision tree method for building energy demand modeling. Energy Build 42(10):1637–1646CrossRef Yu Z, Haghighat F, Fung BCM et al (2010) A decision tree method for building energy demand modeling. Energy Build 42(10):1637–1646CrossRef
Zurück zum Zitat Zhao HX, Magoulès F (2010) Parallel support vector machines applied to the prediction of multiple buildings energy consumption. J Algorithms Comput Technol 4(2):231–250CrossRef Zhao HX, Magoulès F (2010) Parallel support vector machines applied to the prediction of multiple buildings energy consumption. J Algorithms Comput Technol 4(2):231–250CrossRef
Zurück zum Zitat Zhao HX, Magoulès F (2012) A review on the prediction of building energy consumption. Renew Sustain Energy Rev 16(6):3586–3592CrossRef Zhao HX, Magoulès F (2012) A review on the prediction of building energy consumption. Renew Sustain Energy Rev 16(6):3586–3592CrossRef
Metadaten
Titel
Data-Driven Approaches for Prediction and Classification of Building Energy Consumption
verfasst von
Yixuan Wei
Xingxing Zhang
Yong Shi
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2778-1_2