Skip to main content

2017 | OriginalPaper | Buchkapitel

18. Data-Driven Evolutionary-Game-Based Control for Drinking-Water Networks

verfasst von : Julián Barreiro-Gomez, Gerardo Riaño-Briceño, Carlos Ocampo-Martínez, Nicanor Quijano

Erschienen in: Real-time Monitoring and Operational Control of Drinking-Water Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work addresses the design of a control strategy for drinking-water transport networks (DWTNs) based on evolutionary-game theory (EGT). This theory allows to model the evolution of a population composed by a large and finite number of rational agents, which are able to make decisions. As an analogy with a multi-variable control system for DWTN, the whole population represents the total available water resource in the system, and each agent represents a small portion of the resource. In the population evolution, each agent makes the decision to select one of the system valves and/or pumps in order to establish its corresponding value of resource. Agents make these decisions pursuing an improvement of their benefits described by a fitness function, which is associated to the control objective, i.e., agents receive more benefits as the control objective is achieved. This global objective in the DWTN is established by the company in charge of the management of the network, e.g., maintain safety volumes within the tanks, minimize the water costs, minimize the costs of the energy to operate the actuators. The aforementioned evolution process, in which agents make decisions, is used to solve an optimization problem that is described in terms of current measurements of the DWTN tank volumes and subject to constraints over the decision variables in the system (physical limits of flows through valves and pumps). Furthermore, since the control problem is given in terms of instant measurements, this control strategy might be implemented without the need of an explicit model of the DWTN. In this work, two different data-driven population-games-based control designs for DWTNs are presented, and both the necessary assumptions and conditions to implement the proposed methodologies are clearly stated. Finally, the effectiveness of the proposed control approach through the system performance improvement is shown by using the considered DWTN case study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(\mathbf{u}^* \in \Delta \) is a Nash equilibrium if each used strategy entails the maximum benefit for the proportion of agents selecting it, i.e., the set of Nash equilibria is given by \(\{\mathbf{u}^* \in \Delta : u_i^*>0 \Rightarrow f_i(\mathbf{u}^*)\ge f_j(\mathbf{u}^*)\}\), for all \(i,j\in \mathcal {S}\) [23].
 
2
The minimum amount of cliques \(\pi \) such that \(\bigcup _{p \in \mathcal {P}}\mathcal {V}^p=\mathcal {V}\), and the minimum amount of links \(|\tilde{\mathcal {E}}|\), where \(\tilde{\mathcal {E}}=\bigcup _{p \in \mathcal {P}}\mathcal {E}^p \subseteq \mathcal {E}\) such that the graph \(\tilde{\mathcal {G}}=(\mathcal {V},\tilde{\mathcal {E}})\) is connected.
 
3
\(\mathbf{u}^* \in \Delta \) is a Nash equilibrium if each used strategy entails the maximum benefit for the proportion of agents selecting it, i.e., the set of Nash equilibria is given by \(\{\mathbf{u}^* \in \Delta : u_i^*>0 \Rightarrow f_i(\mathbf{u}^*)\ge f_j(\mathbf{u}^*)\}\), for all \(i,j\in \mathcal {S}\) [23].
 
Literatur
1.
Zurück zum Zitat Arslan G, Shamma J (2004) Distributed convergence to Nash equilibria with local utility measurements. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), Atlantis, Paradise Island, Bahamas, pp 1538–1543 Arslan G, Shamma J (2004) Distributed convergence to Nash equilibria with local utility measurements. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), Atlantis, Paradise Island, Bahamas, pp 1538–1543
2.
Zurück zum Zitat Barreiro-Gomez J, Obando G, Quijano N (2016) Distributed population dynamics: optimization and control applications. Trans Syst Man Cybern 99:1–11CrossRef Barreiro-Gomez J, Obando G, Quijano N (2016) Distributed population dynamics: optimization and control applications. Trans Syst Man Cybern 99:1–11CrossRef
3.
Zurück zum Zitat Barreiro-Gomez J, Obando G, Riaño Briceño G, Quijano N, Ocampo-Martinez C (2015) Decentralized control for urban drainage systems via population dynamics: Bogotá case study. In: Proceedings of the European Control Conference (ECC), Linz, Austria Barreiro-Gomez J, Obando G, Riaño Briceño G, Quijano N, Ocampo-Martinez C (2015) Decentralized control for urban drainage systems via population dynamics: Bogotá case study. In: Proceedings of the European Control Conference (ECC), Linz, Austria
4.
Zurück zum Zitat Barreiro-Gomez J, Quijano N, Ocampo-Martinez C (2014) Constrained distributed optimization based on population dynamics. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, California, USA, pp 4260–4265 Barreiro-Gomez J, Quijano N, Ocampo-Martinez C (2014) Constrained distributed optimization based on population dynamics. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, California, USA, pp 4260–4265
5.
Zurück zum Zitat Barreiro-Gomez J, Quijano N, Ocampo-Martinez C (2014) Distributed control of drinking water networks using population dynamics: Barcelona case study. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, California, USA, pp 3216–3221 Barreiro-Gomez J, Quijano N, Ocampo-Martinez C (2014) Distributed control of drinking water networks using population dynamics: Barcelona case study. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, California, USA, pp 3216–3221
6.
Zurück zum Zitat Barreiro-Gomez J, Quijano N, Ocampo-Martinez C (2016) Constrained distributed optimization: a population dynamics approach. Automatica 69:101–116MathSciNetCrossRefMATH Barreiro-Gomez J, Quijano N, Ocampo-Martinez C (2016) Constrained distributed optimization: a population dynamics approach. Automatica 69:101–116MathSciNetCrossRefMATH
7.
Zurück zum Zitat Bomze IM, Pelillo M, Stix V (2000) Approximating the maximum weight clique using replicator dynamics. IEEE Trans Neural Netw Learn Syst 11(6):1228–1241CrossRef Bomze IM, Pelillo M, Stix V (2000) Approximating the maximum weight clique using replicator dynamics. IEEE Trans Neural Netw Learn Syst 11(6):1228–1241CrossRef
8.
Zurück zum Zitat Chong EKP, Zak SH (2011) An introduction to optimization. Series in discrete mathematics and optimization. Wiley Chong EKP, Zak SH (2011) An introduction to optimization. Series in discrete mathematics and optimization. Wiley
9.
Zurück zum Zitat Grosso JM, Ocampo-Martinez C, Puig V, Limon D, Pereira M (2014) Economic MPC for the management of drinking water networks. In: European Control Conference (ECC), Strasbourg, France, pp 790–795 Grosso JM, Ocampo-Martinez C, Puig V, Limon D, Pereira M (2014) Economic MPC for the management of drinking water networks. In: European Control Conference (ECC), Strasbourg, France, pp 790–795
10.
Zurück zum Zitat Grundmann Jens, Schütze Niels, Schmitz Gerd, Al-Shaqsi Saif (2012) Towards an integrated arid zone water management using simulation-based optimization. Environ Earth Sci 65(5):1381–1394CrossRef Grundmann Jens, Schütze Niels, Schmitz Gerd, Al-Shaqsi Saif (2012) Towards an integrated arid zone water management using simulation-based optimization. Environ Earth Sci 65(5):1381–1394CrossRef
12.
Zurück zum Zitat Johnston HC (1976) Cliques of a graph-variations on the Bron-Kerbosch algorithm. Int J Parallel Prog 5(3):209–238MathSciNetMATH Johnston HC (1976) Cliques of a graph-variations on the Bron-Kerbosch algorithm. Int J Parallel Prog 5(3):209–238MathSciNetMATH
13.
Zurück zum Zitat Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Röstel G, Teutsch G, Borchardt D, Krebs P (2012) Integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366CrossRef Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Röstel G, Teutsch G, Borchardt D, Krebs P (2012) Integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366CrossRef
14.
Zurück zum Zitat Lasaulce S, Tembine H (2011) Game theory and learning for wireless networks: fundamentals and applications. Academic Press Lasaulce S, Tembine H (2011) Game theory and learning for wireless networks: fundamentals and applications. Academic Press
16.
Zurück zum Zitat Marden J, Shamma J (2015) Game theory and distributed control. In: Handbook of game theory with economic applications, pp 861–899. Elsevier Marden J, Shamma J (2015) Game theory and distributed control. In: Handbook of game theory with economic applications, pp 861–899. Elsevier
17.
Zurück zum Zitat Marden JR, Shamma JS (2014) Game theory and distributed control. In: Handbook of Game Theory, vol 4, pp 861–899 Marden JR, Shamma JS (2014) Game theory and distributed control. In: Handbook of Game Theory, vol 4, pp 861–899
18.
Zurück zum Zitat Ocampo-Martinez C, Bovo S, Puig V (2011) Partitioning approach oriented to the decentralised predictive control of large-scale systems. J Process Control 21:775–786CrossRef Ocampo-Martinez C, Bovo S, Puig V (2011) Partitioning approach oriented to the decentralised predictive control of large-scale systems. J Process Control 21:775–786CrossRef
19.
Zurück zum Zitat Price RK, Vojinović Z (2011) Urban hydroinformatics: data, models, and decision support for integrated urban water management. IWA Publishing Price RK, Vojinović Z (2011) Urban hydroinformatics: data, models, and decision support for integrated urban water management. IWA Publishing
20.
Zurück zum Zitat Ramirez-Llanos E, Quijano N (2010) A population dynamics approach for the water distribution problem. Int J Control 83(9):1947–1964MathSciNetCrossRefMATH Ramirez-Llanos E, Quijano N (2010) A population dynamics approach for the water distribution problem. Int J Control 83(9):1947–1964MathSciNetCrossRefMATH
21.
Zurück zum Zitat Riaño-Briceño G, Barreiro-Gomez J, Ramirez-Jaime A, Quijano N, Ocampo-Martinez C (2016) MatSWMM—An open-source toolbox for designing real-time control of urban drainage systems. Environ Model Softw 83:143–154 Riaño-Briceño G, Barreiro-Gomez J, Ramirez-Jaime A, Quijano N, Ocampo-Martinez C (2016) MatSWMM—An open-source toolbox for designing real-time control of urban drainage systems. Environ Model Softw 83:143–154
22.
23.
Zurück zum Zitat Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge, MassMATH Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge, MassMATH
24.
Zurück zum Zitat Tembine H, Altman E, El-Azouzi R, Hayel Y (2010) Evolutionary games in wireless networks. IEEE Trans Syst Man Cybern Part B Cybern 40(3):634–646CrossRef Tembine H, Altman E, El-Azouzi R, Hayel Y (2010) Evolutionary games in wireless networks. IEEE Trans Syst Man Cybern Part B Cybern 40(3):634–646CrossRef
25.
Zurück zum Zitat UNICEF (2015) Progress on sanitation and drinking water update and MDG assessment. World Health Organization, Geneva UNICEF (2015) Progress on sanitation and drinking water update and MDG assessment. World Health Organization, Geneva
26.
Zurück zum Zitat Wang Y, Ocampo-Martinez C, Puig V (2015) Robust model predictive control based on Gaussian processes: application to drinking water networks. In: Proceedings of the European Control Conference (ECC), Linz, Austria Wang Y, Ocampo-Martinez C, Puig V (2015) Robust model predictive control based on Gaussian processes: application to drinking water networks. In: Proceedings of the European Control Conference (ECC), Linz, Austria
27.
Zurück zum Zitat Weibull JW (1997) Evolutionary game theory. The MIT Press, London, EnglandMATH Weibull JW (1997) Evolutionary game theory. The MIT Press, London, EnglandMATH
Metadaten
Titel
Data-Driven Evolutionary-Game-Based Control for Drinking-Water Networks
verfasst von
Julián Barreiro-Gomez
Gerardo Riaño-Briceño
Carlos Ocampo-Martínez
Nicanor Quijano
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50751-4_18

Neuer Inhalt