Skip to main content

2016 | OriginalPaper | Buchkapitel

De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networks

verfasst von : Ariel Benou, Ronel Veksler, Alon Friedman, Tammy Riklin Raviv

Erschienen in: Deep Learning and Data Labeling for Medical Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic contrast-enhanced MRI (DCE-MRI) is an imaging protocol where MRI scans are acquired repetitively throughout the injection of a contrast agent. The analysis of dynamic scans is widely used for the detection and quantification of blood brain barrier (BBB) permeability. Extraction of the pharmacokinetic (PK) parameters from the DCE-MRI washout curves allows quantitative assessment of the BBB functionality. Nevertheless, curve fitting required for the analysis of DCE-MRI data is error-prone as the dynamic scans are subject to non-white, spatially-dependent and anisotropic noise that does not fit standard noise models. The two existing approaches i.e. curve smoothing and image de-noising can either produce smooth curves but cannot guaranty fidelity to the PK model or cannot accommodate the high variability in noise statistics in time and space.
We present a novel framework based on Deep Neural Networks (DNNs) to address the DCE-MRI de-noising challenges. The key idea is based on an ensembling of expert DNNs, where each is trained for different noise characteristics and curve prototypes to solve an inverse problem on a specific subset of the input space. The most likely reconstruction is then chosen using a classifier DNN. As ground-truth (clean) signals for training are not available, a model for generating realistic training sets with complex nonlinear dynamics is presented. The proposed approach has been applied to DCE-MRI scans of stroke and brain tumor patients and is shown to favorably compare to state-of-the-art de-noising methods, without degrading the contrast of the original images.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The appendix is avilable in the electronic version of the manuscript and at: https://​drive.​google.​com/​file/​d/​0B_​vghaLYgXRKTnAwSU​5oLUNDWmc/​view?​usp=​sharing.
 
Literatur
1.
Zurück zum Zitat Abbott, N.J., Friedman, A.: Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 53(s6), 1–6 (2012)CrossRef Abbott, N.J., Friedman, A.: Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 53(s6), 1–6 (2012)CrossRef
2.
Zurück zum Zitat Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 227–236. Springer, Heidelberg (1990)CrossRef Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 227–236. Springer, Heidelberg (1990)CrossRef
3.
Zurück zum Zitat Brix, G., Semmler, W., Port, R., Schad, L.R., Layer, G., Lorenz, W.J.: Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J. Comput. Assist. Tomogr. 15(4), 621–628 (1991)CrossRef Brix, G., Semmler, W., Port, R., Schad, L.R., Layer, G., Lorenz, W.J.: Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J. Comput. Assist. Tomogr. 15(4), 621–628 (1991)CrossRef
4.
Zurück zum Zitat Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, CVPR, vol. 2, pp. 60–65 (2005) Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, CVPR, vol. 2, pp. 60–65 (2005)
5.
Zurück zum Zitat Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: ICASSP, pp. 8609–8613. IEEE (2013) Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: ICASSP, pp. 8609–8613. IEEE (2013)
6.
Zurück zum Zitat Gal, Y., et al.: Denoising of dynamic contrast-enhanced MR images using dynamic nonlocal means. IEEE Trans. Med. Imaging 29(2), 302–310 (2010)CrossRef Gal, Y., et al.: Denoising of dynamic contrast-enhanced MR images using dynamic nonlocal means. IEEE Trans. Med. Imaging 29(2), 302–310 (2010)CrossRef
7.
Zurück zum Zitat Golkov, V., et al.: q-space deep learning for twelve-fold shorter and model-freediffusion MRI scans. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 37–44. Springer, Heidelberg (2015) Golkov, V., et al.: q-space deep learning for twelve-fold shorter and model-freediffusion MRI scans. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 37–44. Springer, Heidelberg (2015)
8.
Zurück zum Zitat Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefMATH Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)CrossRef Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)CrossRef
10.
Zurück zum Zitat Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)CrossRefMATH Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)CrossRefMATH
11.
Zurück zum Zitat Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefMATH Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)CrossRefMATH Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)CrossRefMATH
13.
Zurück zum Zitat Martel, A.L.: A fast method of generating pharmacokinetic maps from dynamic contrast-enhanced images of the breast. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 101–108. Springer, Heidelberg (2006)CrossRef Martel, A.L.: A fast method of generating pharmacokinetic maps from dynamic contrast-enhanced images of the breast. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 101–108. Springer, Heidelberg (2006)CrossRef
14.
Zurück zum Zitat Murase, K.: Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn. Reson. Med. 51(4), 858–862 (2004)CrossRef Murase, K.: Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn. Reson. Med. 51(4), 858–862 (2004)CrossRef
15.
Zurück zum Zitat Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, DTIC Document (1985) Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, DTIC Document (1985)
16.
Zurück zum Zitat Schmid, V.J., et al.: A bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study. Magn. Reson. Med. 61(1), 163–174 (2009)CrossRef Schmid, V.J., et al.: A bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study. Magn. Reson. Med. 61(1), 163–174 (2009)CrossRef
17.
Zurück zum Zitat Sourbron, S.P., Buckley, D.L.: Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 26(8), 1004–1027 (2013)CrossRef Sourbron, S.P., Buckley, D.L.: Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 26(8), 1004–1027 (2013)CrossRef
18.
Zurück zum Zitat Tofts, P.: Quantitative MRI of the Brain: Measuring Changes Caused by Disease. Wiley, Hoboken (2005) Tofts, P.: Quantitative MRI of the Brain: Measuring Changes Caused by Disease. Wiley, Hoboken (2005)
19.
Zurück zum Zitat Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging 7(1), 91–101 (1997)CrossRef Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging 7(1), 91–101 (1997)CrossRef
20.
Zurück zum Zitat Tofts, P.S., et al.: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10(3), 223–232 (1999)CrossRef Tofts, P.S., et al.: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10(3), 223–232 (1999)CrossRef
21.
Zurück zum Zitat Veksler, R., Shelef, I., Friedman, A.: Blood-brain barrier imaging in human neuropathologies. Arch. Med. Res. 45(8), 646–652 (2014)CrossRef Veksler, R., Shelef, I., Friedman, A.: Blood-brain barrier imaging in human neuropathologies. Arch. Med. Res. 45(8), 646–652 (2014)CrossRef
22.
Zurück zum Zitat Vincent, P., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetMATH Vincent, P., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetMATH
Metadaten
Titel
De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networks
verfasst von
Ariel Benou
Ronel Veksler
Alon Friedman
Tammy Riklin Raviv
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46976-8_11