Skip to main content
Erschienen in: Neuroinformatics 1/2018

20.01.2018 | Editorial

Deep Learning and Computational Neuroscience

verfasst von: Erik De Schutter

Erschienen in: Neuroinformatics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Especially young colleagues are fascinated by the potential of deep learning for neuroscience. This was obvious at the recent Society for Neuroscience meeting in Washington DC, where the few posters that had the magical words in their title attracted large crowds of attendees who seemed almost exclusively in their twenties. The success of deep learning of data representation has led to impressive applications in image, video and speech processing.1 Compared to these, recent advances in applying reinforcement learning to playing games are outright mind blowing, with AlphaGo Zero achieving superhuman performance in just three days of training on a single machine with specialized hardware.2 It is, therefore, easy to predict that the interest in deep learning among young computational neuroscientists will only increase, but the reality may be more complex than they surmise. In this Editorial, I will focus on the question of correspondence between deep learning and how the brain works.3 I will not consider the many opportunities of applying deep learning as a supporting technology. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://​doi.​org/​10.​1007/​s10994-013-5335-x.
 
2
Silver, D., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354–359. https://​doi.​org/​10.​1038/​nature24270.
 
3
A more extensive analysis emphasizing the brain to deep learning connection can be found in Demis Hassabis et al. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95, 245–258. https://​doi.​org/​10.​1016/​j.​neuron.​2017.​06.​011.
 
4
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554. https://​doi.​org/​10.​1162/​neco.​2006.​18.​7.​1527.
 
5
Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19, 356–365. https://​doi.​org/​10.​1017/​S0140525X0001863​X.
 
6
He, K., et al. (2016). Deep residual learning for image recognition. Conference on Computer Vision and Pattern Recognition.
 
8
Littman, M. L. (2015). Reinforcement learning improves behaviour from evaluative feedback. Nature, 521, 445–451. https://​doi.​org/​10.​1177/​0278364913495721​.
 
9
Guerguiev, J., Lillicrap, T. P., & Richards, B. A. (2017). Towards deep learning with segregated dendrites. eLife, 6. https://​doi.​org/​10.​7554/​eLife.​22901.
 
10
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. In T. A. Polk and C. M. Seifert (eds), Cognitive modeling. MIT Press.
 
11
Lillicrap, T. P. et al. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications, 7, 13276. https://​doi.​org/​10.​1038/​ncomms13276.
 
12
Bengio, Y., Lee, D.-H., Bornschein, J., & Lin, Z. (2015). Towards biologically plausible deep learning. arXiv. arXiv:1502.04156.
 
13
Steuber, V. et al. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron, 54, 121–136. https://​doi.​org/​10.​1016/​j.​neuron.​2007.​03.​015.
 
14
Anwar, H., et al. (2013). Stochastic calcium mechanisms cause dendritic calcium spike variability. The Journal of Neuroscience, 33, 15848–15867. https://​doi.​org/​10.​1523/​JNEUROSCI.​1722-13.​2013.
 
15
Gerstner, W., et al. (2009). Neuronal dynamics. Cambridge University Press. https://​doi.​org/​10.​1017/​CBO9781107447615​.
 
16
Takahashi, N., et al. (2016). Active cortical dendrites modulate perception. Science, 354, 1587–1590. https://​doi.​org/​10.​1126/​science.​aah6066.
 
Metadaten
Titel
Deep Learning and Computational Neuroscience
verfasst von
Erik De Schutter
Publikationsdatum
20.01.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 1/2018
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9360-6

Weitere Artikel der Ausgabe 1/2018

Neuroinformatics 1/2018 Zur Ausgabe