Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2017 | Supplement | Buchkapitel

Deep Learning in Automotive: Challenges and Opportunities

verfasst von : Fabio Falcini, Giuseppe Lami

Erschienen in: Software Process Improvement and Capability Determination

Verlag: Springer International Publishing

share
TEILEN

Abstract

The interest of the automotive industry in deep-learning-based technology is growing and related applications are going to be pervasively used in the modern automobiles. Automotive is a domain where different standards addressing the software development process apply, as Automotive SPICE and, for functional safety relevant products, ISO 26262. So, in the automotive software engineering community, the awareness of the need to integrate deep-learning-based development with development approaches derived from these standards is growing, at the technical, methodological, and cultural levels. This paper starts from a lifecycle for deep-learning-based development defined by the authors, called W-model, and addresses the issue of the applicability of Automotive SPICE to deep-learning-based developments. A conceptual mapping between Automotive SPICE and the deep learning lifecycles phases is provided in this paper with the aim of highlighting the open issues related to the applicability of automotive software development standards to deep learning.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
3.
Zurück zum Zitat Parlak, A., et al.: Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl. Therm. Eng. 26(8–9), 824–828 (2006) CrossRef Parlak, A., et al.: Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl. Therm. Eng. 26(8–9), 824–828 (2006) CrossRef
5.
Zurück zum Zitat Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. J. 61, 85–117 (2015) CrossRef Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. J. 61, 85–117 (2015) CrossRef
6.
Zurück zum Zitat Haykin, S.: Neural Networks and Learning Machines. Prentice-Hall, New York (2009) Haykin, S.: Neural Networks and Learning Machines. Prentice-Hall, New York (2009)
7.
Zurück zum Zitat Credi, J.: Traffic sign classification with deep convolutional neural networks. Master’s thesis, Department of Applied Mechanics, Chalmers University of Technology (2016) Credi, J.: Traffic sign classification with deep convolutional neural networks. Master’s thesis, Department of Applied Mechanics, Chalmers University of Technology (2016)
8.
Zurück zum Zitat LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015) CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015) CrossRef
11.
Zurück zum Zitat ISO 26262—Road Vehicles—Functional Safety—Part 1: Vocabulary, Int’l Standard Org. (2011) ISO 26262—Road Vehicles—Functional Safety—Part 1: Vocabulary, Int’l Standard Org. (2011)
12.
Zurück zum Zitat ISO/AWI PAS 21448—Road Vehicles—Safety of the Intended Functionality, Int’l Standard Org. (2016) ISO/AWI PAS 21448—Road Vehicles—Safety of the Intended Functionality, Int’l Standard Org. (2016)
Metadaten
Titel
Deep Learning in Automotive: Challenges and Opportunities
verfasst von
Fabio Falcini
Giuseppe Lami
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-67383-7_21

Premium Partner