Skip to main content
Erschienen in: Journal of Materials Science 6/2016

01.03.2016 | Original Paper

Density functional theory study of diffusion of lithium in Li–Sn alloys

verfasst von: Jianjian Shi, Zhiguo Wang, Y. Q. Fu

Erschienen in: Journal of Materials Science | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Diffusion of Li in Li x Sn alloys was investigated using a density functional theory in order to fully understand the lithiation process in these types of Li ion batteries. Variation of the calculated open-circuit voltages of the Li x Sn alloys was found to agree well with experimental results. Diffusion coefficients of the Li in the Li x Sn alloys were calculated to be in the range between 6.6 × 10−8 and 5.6 × 10−7 cm2 s−1 at room temperature, which is within the range between 8.0 × 10−8 and 5.9 × 10−7 cm2 s−1 obtained from the experimental measurement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang H, Sun X, Zhang X, Lin H, Wang K, Ma Y (2015) High-capacity nanocarbon anodes for lithium-ion batteries. J Alloy Comp 622:783–788CrossRef Zhang H, Sun X, Zhang X, Lin H, Wang K, Ma Y (2015) High-capacity nanocarbon anodes for lithium-ion batteries. J Alloy Comp 622:783–788CrossRef
2.
Zurück zum Zitat Eom K, Jung J, Lee JT, Lair V, Joshi T, Lee SW, Lin Z, Fuller TF (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 12:314–321CrossRef Eom K, Jung J, Lee JT, Lair V, Joshi T, Lee SW, Lin Z, Fuller TF (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 12:314–321CrossRef
3.
Zurück zum Zitat Kiziltas-Yavuz N, Bhaskar A, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R-A, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping. J Power Sources 267:533–541CrossRef Kiziltas-Yavuz N, Bhaskar A, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R-A, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping. J Power Sources 267:533–541CrossRef
4.
Zurück zum Zitat Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24CrossRef Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24CrossRef
5.
Zurück zum Zitat Kim R, Nam D, Kwon H (2010) Electrochemical performance of a tin electrodeposit with a multi-layered structure for Li-ion batteries. J Power Sources 195:5067–5070CrossRef Kim R, Nam D, Kwon H (2010) Electrochemical performance of a tin electrodeposit with a multi-layered structure for Li-ion batteries. J Power Sources 195:5067–5070CrossRef
6.
Zurück zum Zitat Hu RZ, Zeng MQ, Zhu M (2009) Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochim Acta 54:2843–2850CrossRef Hu RZ, Zeng MQ, Zhu M (2009) Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochim Acta 54:2843–2850CrossRef
7.
Zurück zum Zitat Zhao LZ, Hu SJ, Ru Q, Li WS, Hou XH, Zeng RH, Lu DS (2008) Effects of graphite on electrochemical performance of Sn/C composite thin film anodes. J Power Sources 184:481–484CrossRef Zhao LZ, Hu SJ, Ru Q, Li WS, Hou XH, Zeng RH, Lu DS (2008) Effects of graphite on electrochemical performance of Sn/C composite thin film anodes. J Power Sources 184:481–484CrossRef
8.
Zurück zum Zitat Hu R, Liu H, Zeng M, Liu J, Zhu M (2012) Progress on Sn-based thin-film anode materials for lithium-ion batteries. Chin Sci Bull 57:4119–4130CrossRef Hu R, Liu H, Zeng M, Liu J, Zhu M (2012) Progress on Sn-based thin-film anode materials for lithium-ion batteries. Chin Sci Bull 57:4119–4130CrossRef
9.
Zurück zum Zitat Chou C-Y, Kim H, Hwang GS (2011) A comparative first-principles study of the structure, energetics, and properties of Li-M (M = Si, Ge, Sn) alloys. J Phys Chem C 115:20018–20026CrossRef Chou C-Y, Kim H, Hwang GS (2011) A comparative first-principles study of the structure, energetics, and properties of Li-M (M = Si, Ge, Sn) alloys. J Phys Chem C 115:20018–20026CrossRef
10.
Zurück zum Zitat Robert F, Lippens PE, Fourcade R, Jumas J-C, Gillot F, Morcrette M, Tarascon J-M (2006) Mechanosynthesis and characterisation of the Li–Sn system. Hyperfine Interact 167:797–801CrossRef Robert F, Lippens PE, Fourcade R, Jumas J-C, Gillot F, Morcrette M, Tarascon J-M (2006) Mechanosynthesis and characterisation of the Li–Sn system. Hyperfine Interact 167:797–801CrossRef
11.
Zurück zum Zitat Nithyadharseni P, Reddy MV, Nalini B, Kalpana M, Chowdari BVR (2015) Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochim Acta 161:261–268CrossRef Nithyadharseni P, Reddy MV, Nalini B, Kalpana M, Chowdari BVR (2015) Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochim Acta 161:261–268CrossRef
12.
Zurück zum Zitat Nithya C, Gopukumar S (2013) Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. ChemSusChem 6:898–904CrossRef Nithya C, Gopukumar S (2013) Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. ChemSusChem 6:898–904CrossRef
13.
Zurück zum Zitat Zhang HK, Song HH, Chen XH, Zhou JS (2012) Enhanced lithium ion storage property of Sn nanoparticles: the confinement effect of few-walled carbon nanotubes. J Phys Chem C 116:22774–22779CrossRef Zhang HK, Song HH, Chen XH, Zhou JS (2012) Enhanced lithium ion storage property of Sn nanoparticles: the confinement effect of few-walled carbon nanotubes. J Phys Chem C 116:22774–22779CrossRef
14.
Zurück zum Zitat Li Y, Wu J, Chopra N (2015) Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries. J Mater Sci 50:7843–7865CrossRef Li Y, Wu J, Chopra N (2015) Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries. J Mater Sci 50:7843–7865CrossRef
15.
Zurück zum Zitat Jiang H, Ge Y, Fu K, Lu Y, Chen C, Zhu J, Dirican M, Zhang X (2015) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50:1094–1102CrossRef Jiang H, Ge Y, Fu K, Lu Y, Chen C, Zhu J, Dirican M, Zhang X (2015) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50:1094–1102CrossRef
16.
Zurück zum Zitat Qiao H, Zheng Z, Zhang L, Xiao L (2008) SnO(2)@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. J Mater Sci 43:2778–2784CrossRef Qiao H, Zheng Z, Zhang L, Xiao L (2008) SnO(2)@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. J Mater Sci 43:2778–2784CrossRef
17.
Zurück zum Zitat Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391CrossRef Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391CrossRef
18.
Zurück zum Zitat Wang XL, Han WQ, Chen J, Graetz J (2010) Single-crystal intermetallic M-Sn (M = Fe, Cu Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. ACS Appl Mater Interface 2:1548–1551CrossRef Wang XL, Han WQ, Chen J, Graetz J (2010) Single-crystal intermetallic M-Sn (M = Fe, Cu Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. ACS Appl Mater Interface 2:1548–1551CrossRef
19.
Zurück zum Zitat Zhang PP, Ma ZS, Wang Y, Zou YL, Lei WX, Pan Y, Lu CS (2015) A first principles study of the mechanical properties of Li–Sn alloys. Rsc Adv 5:36022–36029CrossRef Zhang PP, Ma ZS, Wang Y, Zou YL, Lei WX, Pan Y, Lu CS (2015) A first principles study of the mechanical properties of Li–Sn alloys. Rsc Adv 5:36022–36029CrossRef
20.
Zurück zum Zitat Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 37:271–278CrossRef Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 37:271–278CrossRef
21.
Zurück zum Zitat Nimon ES, Churikov AV (1996) Electrochemical behaviour of Li–Sn, Li–Cd and Li–Sn–Cd alloys in propylene carbonate solution. Electrochim Acta 41:1455–1464CrossRef Nimon ES, Churikov AV (1996) Electrochemical behaviour of Li–Sn, Li–Cd and Li–Sn–Cd alloys in propylene carbonate solution. Electrochim Acta 41:1455–1464CrossRef
22.
Zurück zum Zitat Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRef Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRef
23.
Zurück zum Zitat Machill S, Rahner D (1995) In-situ electrochemical characterization of lithium-alloying materials for rechargeable anodes in lithium batteries. J Power Sources 54:428–432CrossRef Machill S, Rahner D (1995) In-situ electrochemical characterization of lithium-alloying materials for rechargeable anodes in lithium batteries. J Power Sources 54:428–432CrossRef
24.
Zurück zum Zitat Wang J, Raistrick ID, Huggins RA (1986) Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J Electrochem Soc 133:457–460CrossRef Wang J, Raistrick ID, Huggins RA (1986) Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J Electrochem Soc 133:457–460CrossRef
25.
Zurück zum Zitat Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58:15583–15588CrossRef Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58:15583–15588CrossRef
26.
Zurück zum Zitat Jianjian Shi WS, Jin Wei, Yin Guangqiang (2015) Diffusion of lithium in α-Sn and β-Sn as anode materials for lithium ion batteries. Inter J Electrochem Sci Technol Adv Mater 10:4793–4800 Jianjian Shi WS, Jin Wei, Yin Guangqiang (2015) Diffusion of lithium in α-Sn and β-Sn as anode materials for lithium ion batteries. Inter J Electrochem Sci Technol Adv Mater 10:4793–4800
27.
Zurück zum Zitat Genser O, Hafner J (2001) Structure and bonding in crystalline and molten Li–Sn alloys: a first-principles density-functional study. Phys Rev B 63(14):144204CrossRef Genser O, Hafner J (2001) Structure and bonding in crystalline and molten Li–Sn alloys: a first-principles density-functional study. Phys Rev B 63(14):144204CrossRef
28.
Zurück zum Zitat Zhang T, Fu LJ, Gao J, Wu YP, Holze R, Wu HQ (2007) Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. J Power Sources 174:770–773CrossRef Zhang T, Fu LJ, Gao J, Wu YP, Holze R, Wu HQ (2007) Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. J Power Sources 174:770–773CrossRef
29.
Zurück zum Zitat Xie J, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS (2010) Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique. Solid State Ionics 181:1611–1615CrossRef Xie J, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS (2010) Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique. Solid State Ionics 181:1611–1615CrossRef
30.
Zurück zum Zitat Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys-Condens Mat 14:2745–2779CrossRef Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys-Condens Mat 14:2745–2779CrossRef
31.
Zurück zum Zitat Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRef Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRef
32.
Zurück zum Zitat Legrain F, Malyi OI, Manzhos S (2014) Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon. Comp Mater Sci 94:214–217CrossRef Legrain F, Malyi OI, Manzhos S (2014) Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon. Comp Mater Sci 94:214–217CrossRef
33.
Zurück zum Zitat Kim H, Chou C-Y, Ekerdt JG, Hwang GS (2011) Structure and properties of Li–Si alloys: a first-principles study. J Phys Chem C 115:2514–2521CrossRef Kim H, Chou C-Y, Ekerdt JG, Hwang GS (2011) Structure and properties of Li–Si alloys: a first-principles study. J Phys Chem C 115:2514–2521CrossRef
34.
Zurück zum Zitat Janz GJ, Kerbs U, Siegenthaler H (1972) Molten salts: nitrates, nitrites, and mixtures: electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 1:581–746CrossRef Janz GJ, Kerbs U, Siegenthaler H (1972) Molten salts: nitrates, nitrites, and mixtures: electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 1:581–746CrossRef
35.
Zurück zum Zitat Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350CrossRef Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350CrossRef
36.
Zurück zum Zitat Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365CrossRef Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365CrossRef
37.
Zurück zum Zitat Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRef Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRef
38.
Zurück zum Zitat Anani A, Crouch-Baker S, Huggins RA (1987) Kinetic and thermodynamic electrode materials at ambient temperature. J Electrochem Soc 134:3098–3102CrossRef Anani A, Crouch-Baker S, Huggins RA (1987) Kinetic and thermodynamic electrode materials at ambient temperature. J Electrochem Soc 134:3098–3102CrossRef
Metadaten
Titel
Density functional theory study of diffusion of lithium in Li–Sn alloys
verfasst von
Jianjian Shi
Zhiguo Wang
Y. Q. Fu
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9639-z

Weitere Artikel der Ausgabe 6/2016

Journal of Materials Science 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.