Skip to main content

2016 | Supplement | Buchkapitel

Derivation of a Hydrodynamic Model for Electron Transport in Graphene via Entropy Maximization

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this contribution, which is based on the results published in Barletti (J Math Phys 55:083303, 2014) and Barletti et al. (Tr Inst Mat 11:11–29, 2014), we apply the maximum entropy closure technique in order to derive equations of hydrodynamic type for a system of particles with spin-orbit interaction, with particular focus on the case of electrons on a graphene sheet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barletti, L.: Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle. J. Math. Phys. 55, 083303 (2014)MathSciNetCrossRefMATH Barletti, L.: Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle. J. Math. Phys. 55, 083303 (2014)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Barletti, L., Méhats, F.: Quantum drift-diffusion modeling of spin transport in nanostructures. J. Math. Phys. 51, 053304 (2010)MathSciNetCrossRefMATH Barletti, L., Méhats, F.: Quantum drift-diffusion modeling of spin transport in nanostructures. J. Math. Phys. 51, 053304 (2010)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Barletti, L., Borgioli, G., Frosali, G.: Semiclassical hydrodynamics of a quantum Kane model for semiconductors. Tr. Inst. Mat. 11, 11–29 (2014)MATH Barletti, L., Borgioli, G., Frosali, G.: Semiclassical hydrodynamics of a quantum Kane model for semiconductors. Tr. Inst. Mat. 11, 11–29 (2014)MATH
4.
Zurück zum Zitat Barletti, L., Frosali, G., Morandi, O.: Kinetic and hydrodynamic models for multi-band quantum transport in crystals. In: Ehrhardt, M., Koprucki, T. (eds.) Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques. Springer, Berlin (2014) Barletti, L., Frosali, G., Morandi, O.: Kinetic and hydrodynamic models for multi-band quantum transport in crystals. In: Ehrhardt, M., Koprucki, T. (eds.) Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques. Springer, Berlin (2014)
5.
Zurück zum Zitat Camiola, V.D., Romano, V.: Hydrodynamical model for charge transport in graphene. J. Stat. Phys. 157, 1114–1137 (2014)MathSciNetCrossRefMATH Camiola, V.D., Romano, V.: Hydrodynamical model for charge transport in graphene. J. Stat. Phys. 157, 1114–1137 (2014)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
7.
Zurück zum Zitat Morandi, O.: Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys. Rev. B 80, 02430 (2009)CrossRef Morandi, O.: Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys. Rev. B 80, 02430 (2009)CrossRef
8.
Zurück zum Zitat Morandi, O., Barletti, L.: Particle dynamics in graphene: collimated beam limit. J. Comput. Theor. Transp. 43, 1–15 (2014)MathSciNetCrossRef Morandi, O., Barletti, L.: Particle dynamics in graphene: collimated beam limit. J. Comput. Theor. Transp. 43, 1–15 (2014)MathSciNetCrossRef
Metadaten
Titel
Derivation of a Hydrodynamic Model for Electron Transport in Graphene via Entropy Maximization
verfasst von
L. Barletti
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-23413-7_101

Premium Partner