Skip to main content

2016 | OriginalPaper | Buchkapitel

2. Design and Implementation of Ultra-Low-Power ZigBee/WPAN Receiver

verfasst von : Zhicheng Lin, Pui-In Mak (Elvis), Rui Paulo Martins

Erschienen in: Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, the proliferation of short-range wireless applications for Internet of Things and personal healthcare calls for ultra-low power and cost CMOS radios [1]. Ultra-low voltage (ULV) designs have been one of the key directions to approach a better power efficiency [25]

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Choi, H. Park, I. Nam et al., An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4GHz. IEEE J. Solid-State Circ. 38, 2258–2268 (2003)CrossRef P. Choi, H. Park, I. Nam et al., An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4GHz. IEEE J. Solid-State Circ. 38, 2258–2268 (2003)CrossRef
2.
Zurück zum Zitat C.-H. Li, Y.-L. Liu, C.-N. Kuo, A 0.6-V 0.33-mW 5.5-GHZ receiver front-end using resonator coupling technique. IEEE Trans. Microw. Theory Tech. 59(6), 1629–1638 (2011)CrossRef C.-H. Li, Y.-L. Liu, C.-N. Kuo, A 0.6-V 0.33-mW 5.5-GHZ receiver front-end using resonator coupling technique. IEEE Trans. Microw. Theory Tech. 59(6), 1629–1638 (2011)CrossRef
3.
Zurück zum Zitat B.W. Cook, A. Berny, A. Molnar et al., Low-power, 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)CrossRef B.W. Cook, A. Berny, A. Molnar et al., Low-power, 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)CrossRef
4.
Zurück zum Zitat A.C. Herberg, T.W. Brown, T.S. Fiez et al., A 250-mV, 352-μW GPS receiver RF front-end in 130-nm CMOS. IEEE J. Solid-State Circ. 46, 938–949 (2011)CrossRef A.C. Herberg, T.W. Brown, T.S. Fiez et al., A 250-mV, 352-μW GPS receiver RF front-end in 130-nm CMOS. IEEE J. Solid-State Circ. 46, 938–949 (2011)CrossRef
5.
Zurück zum Zitat F. Zhang, K. Wang, J. Koo et al., A 1.6mW 300 mV-Supply 2.4 GHz Receiver with –94dBm Sensitivity for Energy-Harvesting Applications, in ISSCC Digital Technical Papers, pp. 456–457, Feb 2013 F. Zhang, K. Wang, J. Koo et al., A 1.6mW 300 mV-Supply 2.4 GHz Receiver with –94dBm Sensitivity for Energy-Harvesting Applications, in ISSCC Digital Technical Papers, pp. 456–457, Feb 2013
6.
Zurück zum Zitat A. Mirzaei, H. Darabi, J.C. Leete et al., Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers. IEEE J. Solid-State Circ. 44, 2678–2688 (2009)CrossRef A. Mirzaei, H. Darabi, J.C. Leete et al., Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers. IEEE J. Solid-State Circ. 44, 2678–2688 (2009)CrossRef
7.
Zurück zum Zitat A. Mirzaei, H. Darabi, J.C. Leete et al., Analysis and optimization of direct-conversion receivers with 25 % duty-cycle current- driven passive mixers. IEEE Trans. Circ. Syst. I, Reg. Papers 57, 2353–2366 (2010)MathSciNetCrossRef A. Mirzaei, H. Darabi, J.C. Leete et al., Analysis and optimization of direct-conversion receivers with 25 % duty-cycle current- driven passive mixers. IEEE Trans. Circ. Syst. I, Reg. Papers 57, 2353–2366 (2010)MathSciNetCrossRef
8.
Zurück zum Zitat A. Balankutty, P.R. Kinget, An ultra-low voltage, low-noise, high linearity 900-MHz receiver with digitally calibrated in-band feed-forward interferer cancellation in 65-nm CMOS. IEEE J. Solid-State Circ. 46, 2268–2283 (2011)CrossRef A. Balankutty, P.R. Kinget, An ultra-low voltage, low-noise, high linearity 900-MHz receiver with digitally calibrated in-band feed-forward interferer cancellation in 65-nm CMOS. IEEE J. Solid-State Circ. 46, 2268–2283 (2011)CrossRef
9.
Zurück zum Zitat Y. Feng, G. Takemura, S. Kawaguchi et al., Digitally assisted IIP2 Calibration for CMOS direct-conversion receivers. IEEE J. Solid-State Circ. 46, 2253–2267 (2011)CrossRef Y. Feng, G. Takemura, S. Kawaguchi et al., Digitally assisted IIP2 Calibration for CMOS direct-conversion receivers. IEEE J. Solid-State Circ. 46, 2253–2267 (2011)CrossRef
10.
Zurück zum Zitat P.-I. Mak, R.P. Martins, A 0.46-mm2 4-dB NF unified receiver front-end for full-band mobile TV in 65-nm CMOS. IEEE J. Solid-State Circ. 46, 1970–1984 (2011)CrossRef P.-I. Mak, R.P. Martins, A 0.46-mm2 4-dB NF unified receiver front-end for full-band mobile TV in 65-nm CMOS. IEEE J. Solid-State Circ. 46, 1970–1984 (2011)CrossRef
11.
Zurück zum Zitat N. Poobuapheun, W.-H. Chen, Z. Boos et al., A 1.5-V 0.7-2.5-GHz CMOS quadrature demodulator for multiband direct-conversion receivers. IEEE J. Solid-State Circ. 42, 1669–1677 (2007)CrossRefMATH N. Poobuapheun, W.-H. Chen, Z. Boos et al., A 1.5-V 0.7-2.5-GHz CMOS quadrature demodulator for multiband direct-conversion receivers. IEEE J. Solid-State Circ. 42, 1669–1677 (2007)CrossRefMATH
12.
Zurück zum Zitat C. Andrews, A.C. Molnar, A passive mixer-first receiver with digitally controlled and widely tunable RF interface. IEEE J. Solid-State Circ. 45, 2696–2708 (2010)CrossRef C. Andrews, A.C. Molnar, A passive mixer-first receiver with digitally controlled and widely tunable RF interface. IEEE J. Solid-State Circ. 45, 2696–2708 (2010)CrossRef
13.
Zurück zum Zitat C. Andrews, A.C. Molnar, Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers. IEEE Trans. Circ. Syst. I, Reg. Papers 57, 3092–3103 (2010)MathSciNetCrossRef C. Andrews, A.C. Molnar, Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers. IEEE Trans. Circ. Syst. I, Reg. Papers 57, 3092–3103 (2010)MathSciNetCrossRef
14.
Zurück zum Zitat A. Molnar, C. Andrews, Impedance, Filtering and Noise in N-phase Passive CMOS Mixers, in Proceedings of IEEE CICC, pp. 1–8, Sept 2012 A. Molnar, C. Andrews, Impedance, Filtering and Noise in N-phase Passive CMOS Mixers, in Proceedings of IEEE CICC, pp. 1–8, Sept 2012
15.
Zurück zum Zitat J. Kaykovuori, K. Stadius, J. Ryynanen, Analysis and design of passive polyphase filters. IEEE Trans. Circ. Syst. I, Reg. Papers 55, 3023–3037 (2008)CrossRef J. Kaykovuori, K. Stadius, J. Ryynanen, Analysis and design of passive polyphase filters. IEEE Trans. Circ. Syst. I, Reg. Papers 55, 3023–3037 (2008)CrossRef
16.
Zurück zum Zitat F. Behbahani, Y. Kishigami, J. Leete et al., CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid-State Circ. 36, 873–887 (2001)CrossRef F. Behbahani, Y. Kishigami, J. Leete et al., CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid-State Circ. 36, 873–887 (2001)CrossRef
17.
Zurück zum Zitat A. Liscidini, M. Tedeschi, R. Castello, Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J. Solid-State Circ. 45, 1710–1719 (2010)CrossRef A. Liscidini, M. Tedeschi, R. Castello, Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J. Solid-State Circ. 45, 1710–1719 (2010)CrossRef
18.
Zurück zum Zitat T.H. Lee, in The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004) T.H. Lee, in The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)
19.
Zurück zum Zitat B. Razavi, RF Microelectronics, 2nd edn. (Prentice-Hall, Upper Saddle River, 2011) B. Razavi, RF Microelectronics, 2nd edn. (Prentice-Hall, Upper Saddle River, 2011)
20.
Zurück zum Zitat W. Kluge, F. Poegel, H. Roller et al., A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee TM applications. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)CrossRef W. Kluge, F. Poegel, H. Roller et al., A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee TM applications. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)CrossRef
21.
Zurück zum Zitat M. Camus, B. Butaye, L. Garcia et al., A 5.4mW/0.07 mm2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN stand. IEEE J. Solid-State Circ. 43, 1372–1383 (2008)CrossRef M. Camus, B. Butaye, L. Garcia et al., A 5.4mW/0.07 mm2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN stand. IEEE J. Solid-State Circ. 43, 1372–1383 (2008)CrossRef
22.
Zurück zum Zitat A. Balankutty, S. Yn, Y. Feng et al., A 0.6-V Zero-IF/Low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications. IEEE J. Solid-State Circ. 45, 538–553 (2010)CrossRef A. Balankutty, S. Yn, Y. Feng et al., A 0.6-V Zero-IF/Low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications. IEEE J. Solid-State Circ. 45, 538–553 (2010)CrossRef
23.
Zurück zum Zitat J.-S. Syu, C. Meng, C.-L. Wang, 2.4-GHz low-noise direct- conversion receiver with deep N-well vertical-NPN BJT operating near cutoff frequency. IEEE Trans. Microw. Theory Tech. 45, 538–553 (2010) J.-S. Syu, C. Meng, C.-L. Wang, 2.4-GHz low-noise direct- conversion receiver with deep N-well vertical-NPN BJT operating near cutoff frequency. IEEE Trans. Microw. Theory Tech. 45, 538–553 (2010)
24.
Zurück zum Zitat J. Kaykovuori, K. Stadius, J. Ryynanen, An energy-aware CMOS receiver front end for low-power 2.4-GHz applications. IEEE Trans. Circ. Syst. I, Reg. Papers 57, 2675–2684 (2010)CrossRef J. Kaykovuori, K. Stadius, J. Ryynanen, An energy-aware CMOS receiver front end for low-power 2.4-GHz applications. IEEE Trans. Circ. Syst. I, Reg. Papers 57, 2675–2684 (2010)CrossRef
25.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, A 1.7mW 0.22 mm2 2.4 GHz ZigBee RX Exploiting a Current-Reuse Blixer + Hybrid Filter Topology in 65 nm CMOS, in ISSCC Digital Technical Papers, pp. 448–449, Feb 2013 Z. Lin, P.-I. Mak, R.P. Martins, A 1.7mW 0.22 mm2 2.4 GHz ZigBee RX Exploiting a Current-Reuse Blixer + Hybrid Filter Topology in 65 nm CMOS, in ISSCC Digital Technical Papers, pp. 448–449, Feb 2013
26.
Zurück zum Zitat J.L. Gonzalez, H. Solar, I. Adin et al., A 16-kV HBM RF ESD protection codesign for a 1-mW CMOS direct conversion receiver operating in the 2.4-GHz ISM band. IEEE Trans. Microw. Theory Tech. 59, 2318–2330 (2011)CrossRef J.L. Gonzalez, H. Solar, I. Adin et al., A 16-kV HBM RF ESD protection codesign for a 1-mW CMOS direct conversion receiver operating in the 2.4-GHz ISM band. IEEE Trans. Microw. Theory Tech. 59, 2318–2330 (2011)CrossRef
27.
Zurück zum Zitat T.-K. Nguyen, V. Krizhanovskii, J. Lee et al., A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18 μm CMOS technology. IEEE Trans. Microw. Theory Tech. 54, 4062–4071 (2006)CrossRef T.-K. Nguyen, V. Krizhanovskii, J. Lee et al., A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18 μm CMOS technology. IEEE Trans. Microw. Theory Tech. 54, 4062–4071 (2006)CrossRef
28.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, A 0.14-mm2, 1.4-mW, 59.4 dB-SFDR, 2.4-GHz ZigBee/WPAN receiver exploiting a “Split-LNTA + 50 % LO” topology in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 62, 1525–1534 (2014)CrossRef Z. Lin, P.-I. Mak, R.P. Martins, A 0.14-mm2, 1.4-mW, 59.4 dB-SFDR, 2.4-GHz ZigBee/WPAN receiver exploiting a “Split-LNTA + 50 % LO” topology in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 62, 1525–1534 (2014)CrossRef
Metadaten
Titel
Design and Implementation of Ultra-Low-Power ZigBee/WPAN Receiver
verfasst von
Zhicheng Lin
Pui-In Mak (Elvis)
Rui Paulo Martins
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-21524-2_2

Neuer Inhalt