Skip to main content
Erschienen in: Journal of Materials Science 5/2014

01.03.2014

Design and preparation of graphene/poly(ether ether ketone) composites with excellent electrical conductivity

verfasst von: Lilong Yang, Shuling Zhang, Zheng Chen, Yunliang Guo, Jiashuang Luan, Zhi Geng, Guibin Wang

Erschienen in: Journal of Materials Science | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene/poly(ether ether ketone) (m-TRG/PEEK) composites with excellent electrical conductivity were fabricated by hot pressing technique with thermally reduced graphene nanosheets (m-TRG) which were modified by poly(ether sulfone). Moreover, the conductive, thermal, and mechanical properties of PEEK/m-TRG composites were investigated by the precision impedance analyzer, thermal gravimetric analyzer, differential scanning calorimetry, and universal tester, respectively. The electrical conductivity of m-TRG/PEEK composites was greatly improved by incorporating graphene, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.76 vol.%. A high electrical conductivity of 0.18 S m−1 was achieved with 3.84 vol.% of m-TRG. The data were compared with those of composites reduced chemically, and the results showed that thermal reduction was an effective method to acquire higher electrical conductive composites. The excellent electrical property should be attributed to the large specific surface area of m-TRG, well dispersion of m-TRG in PEEK matrix, and good compatibility of m-TRG with PEEK matrix, as proven by scanning electron microscope. Besides, m-TRG/PEEK composites also exhibited relatively good thermal and mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q et al (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24(47):6348–6355CrossRef Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q et al (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24(47):6348–6355CrossRef
2.
Zurück zum Zitat Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24(37):5045–5064CrossRef Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24(37):5045–5064CrossRef
3.
Zurück zum Zitat Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300CrossRef Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300CrossRef
4.
Zurück zum Zitat de Guzman RC, Yang J, Ming-Cheng M, Salley SO, Ng KYS (2013) A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance. J Mater Sci 48(14):4823–4833. doi:10.1007/s10853-012-7094-7 CrossRef de Guzman RC, Yang J, Ming-Cheng M, Salley SO, Ng KYS (2013) A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance. J Mater Sci 48(14):4823–4833. doi:10.​1007/​s10853-012-7094-7 CrossRef
5.
Zurück zum Zitat Stylianakis MM, Spyropoulos GD, Stratakis E, Kymakis E (2012) Solution-processable graphene linked to 3,5-dinitrobenzoyl as an electron acceptor in organic bulk heterojunction photovoltaic devices. Carbon 50(15):5554–5561CrossRef Stylianakis MM, Spyropoulos GD, Stratakis E, Kymakis E (2012) Solution-processable graphene linked to 3,5-dinitrobenzoyl as an electron acceptor in organic bulk heterojunction photovoltaic devices. Carbon 50(15):5554–5561CrossRef
6.
Zurück zum Zitat Xiao M, Sun LY, Liu JJ, Li Y, Gong KC (2002) Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 43(8):2245–2248CrossRef Xiao M, Sun LY, Liu JJ, Li Y, Gong KC (2002) Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 43(8):2245–2248CrossRef
7.
Zurück zum Zitat Li W, Liu Z-Y, Yang M-B (2010) Preparation of carbon black/polypropylene nanocomposite with low percolation threshold using mild blending method. J Appl Polym Sci 115(5):2629–2634CrossRef Li W, Liu Z-Y, Yang M-B (2010) Preparation of carbon black/polypropylene nanocomposite with low percolation threshold using mild blending method. J Appl Polym Sci 115(5):2629–2634CrossRef
8.
Zurück zum Zitat Zhang Q, Vichchulada P, Shivareddy SB, Lay MD (2012) Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing. J Mater Sci 47(7):3233–3240. doi:10.1007/s10853-011-6161-9 CrossRef Zhang Q, Vichchulada P, Shivareddy SB, Lay MD (2012) Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing. J Mater Sci 47(7):3233–3240. doi:10.​1007/​s10853-011-6161-9 CrossRef
9.
Zurück zum Zitat Xiang F, Shi Y, Li X, Huang T, Chen C, Peng Y et al (2012) Cocontinuous morphology of immiscible high density polyethylene/polyamide 6 blend induced by multiwalled carbon nanotubes network. Eur Polym J 48(2):350–361CrossRef Xiang F, Shi Y, Li X, Huang T, Chen C, Peng Y et al (2012) Cocontinuous morphology of immiscible high density polyethylene/polyamide 6 blend induced by multiwalled carbon nanotubes network. Eur Polym J 48(2):350–361CrossRef
10.
Zurück zum Zitat Zhan YH, Lavorgna M, Buonocore G, Xia HS (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22(21):10464–10468CrossRef Zhan YH, Lavorgna M, Buonocore G, Xia HS (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22(21):10464–10468CrossRef
11.
Zurück zum Zitat Das S, Irin F, Ahmed HST, Cortinas AB, Wajid AS, Parviz D et al (2012) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer 53(12):2485–2494CrossRef Das S, Irin F, Ahmed HST, Cortinas AB, Wajid AS, Parviz D et al (2012) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer 53(12):2485–2494CrossRef
12.
Zurück zum Zitat Kim S, Drza LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142CrossRef Kim S, Drza LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142CrossRef
13.
Zurück zum Zitat Ho K-K, Hsiao M-C, Chou T-Y, Ma C-CM, Xie X-F, Chiang J-C et al (2013) Preparation and characterization of covalently functionalized graphene using vinyl-terminated benzoxazine monomer and associated nanocomposites with low coefficient of thermal expansion. Polym Int 62(6):966–973CrossRef Ho K-K, Hsiao M-C, Chou T-Y, Ma C-CM, Xie X-F, Chiang J-C et al (2013) Preparation and characterization of covalently functionalized graphene using vinyl-terminated benzoxazine monomer and associated nanocomposites with low coefficient of thermal expansion. Polym Int 62(6):966–973CrossRef
14.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef
15.
Zurück zum Zitat King JA, Klimek DR, Miskioglu I, Odegard GM (2012) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223CrossRef King JA, Klimek DR, Miskioglu I, Odegard GM (2012) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223CrossRef
16.
Zurück zum Zitat Patole AS, Patole SP, Kang H, Yoo J-B, Kim T-H, Ahn J-H (2010) A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J Colloid Interface Sci 350(2):530–537CrossRef Patole AS, Patole SP, Kang H, Yoo J-B, Kim T-H, Ahn J-H (2010) A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J Colloid Interface Sci 350(2):530–537CrossRef
17.
Zurück zum Zitat Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRef Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRef
18.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450CrossRef
19.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef
20.
Zurück zum Zitat Steurer P, Wissert R, Thomann R, Muelhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327CrossRef Steurer P, Wissert R, Thomann R, Muelhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327CrossRef
21.
Zurück zum Zitat Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H et al (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484(4–6):247–253CrossRef Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H et al (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484(4–6):247–253CrossRef
22.
Zurück zum Zitat Gan DJ, Lu SQ, Song CS, Wang ZJ (2001) Physical properties of poly(ether ketone ketone)/mica composites: effect of filler content. Mater Lett 48(5):299–302CrossRef Gan DJ, Lu SQ, Song CS, Wang ZJ (2001) Physical properties of poly(ether ketone ketone)/mica composites: effect of filler content. Mater Lett 48(5):299–302CrossRef
23.
Zurück zum Zitat Extrand CW, Bhatt S, Monson L (2001) The mechanical properties of insert-molded poly (ether imide) (PEI)/C fiber poly(ether ether ketone) (PEEK) composites. J Mater Sci 36(19):4603–4609. doi:10.1023/A:1017933828240 CrossRef Extrand CW, Bhatt S, Monson L (2001) The mechanical properties of insert-molded poly (ether imide) (PEI)/C fiber poly(ether ether ketone) (PEEK) composites. J Mater Sci 36(19):4603–4609. doi:10.​1023/​A:​1017933828240 CrossRef
24.
Zurück zum Zitat Diez-Pascual AM, Ashrafi B, Naffakh M, Gonzalez-Dominguez JM, Johnston A, Simard B et al (2011) Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon 49(8):2817–2833CrossRef Diez-Pascual AM, Ashrafi B, Naffakh M, Gonzalez-Dominguez JM, Johnston A, Simard B et al (2011) Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon 49(8):2817–2833CrossRef
25.
Zurück zum Zitat Zhong YJ, Xie GY, Sui GX, Yang R (2011) Poly(ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: mechanical properties and sliding wear behavior with water lubrication. J Appl Polym Sci 119(3):1711–1720CrossRef Zhong YJ, Xie GY, Sui GX, Yang R (2011) Poly(ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: mechanical properties and sliding wear behavior with water lubrication. J Appl Polym Sci 119(3):1711–1720CrossRef
26.
28.
Zurück zum Zitat Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398CrossRef Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398CrossRef
29.
Zurück zum Zitat Thomas HR, Vallés C, Young RJ, Kinloch IA, Wilson NR, Rourke JP (2013) Identifying the fluorescence of graphene oxide. J Mater Chem C 1(2):338–342CrossRef Thomas HR, Vallés C, Young RJ, Kinloch IA, Wilson NR, Rourke JP (2013) Identifying the fluorescence of graphene oxide. J Mater Chem C 1(2):338–342CrossRef
30.
Zurück zum Zitat Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem 123(14):3231–3235CrossRef Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem 123(14):3231–3235CrossRef
31.
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef
32.
Zurück zum Zitat Wilson NR, Pandey PA, Beanland R et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9):2547–2556CrossRef Wilson NR, Pandey PA, Beanland R et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9):2547–2556CrossRef
33.
Zurück zum Zitat Cao J, Qi G-Q, Ke K, Luo Y, Yang W, Xie B-H et al (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47(13):5097–5105. doi:10.1007/s10853-012-6383-5 CrossRef Cao J, Qi G-Q, Ke K, Luo Y, Yang W, Xie B-H et al (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47(13):5097–5105. doi:10.​1007/​s10853-012-6383-5 CrossRef
34.
Zurück zum Zitat Siegmund C, Leuenberger H (1999) Percolation theory, conductivity and dissolution of hydrophilic suppository bases (PEG systems). Int J Pharm 189(2):187–196CrossRef Siegmund C, Leuenberger H (1999) Percolation theory, conductivity and dissolution of hydrophilic suppository bases (PEG systems). Int J Pharm 189(2):187–196CrossRef
35.
Zurück zum Zitat Leuenberger H (1999) The application of percolation theory in powder technology. Adv Powder Technol 10(4):323–352CrossRef Leuenberger H (1999) The application of percolation theory in powder technology. Adv Powder Technol 10(4):323–352CrossRef
36.
Zurück zum Zitat Tang Q, Cai H, Yuan S, Wang X (2012) Percolation effect and thermoplasticity of conducting [poly(acrylic acid)/C16TAB-modified graphene oxide] n multilayer films. J Mater Sci 48(4):1843–1851. doi:10.1007/s10853-012-6950-9 CrossRef Tang Q, Cai H, Yuan S, Wang X (2012) Percolation effect and thermoplasticity of conducting [poly(acrylic acid)/C16TAB-modified graphene oxide] n multilayer films. J Mater Sci 48(4):1843–1851. doi:10.​1007/​s10853-012-6950-9 CrossRef
37.
Zurück zum Zitat Connor MT, Roy S, Ezquerra TA, Calleja FJB (1998) Broadband ac conductivity of conductor–polymer composites. Phys Rev B 57(4):2286CrossRef Connor MT, Roy S, Ezquerra TA, Calleja FJB (1998) Broadband ac conductivity of conductor–polymer composites. Phys Rev B 57(4):2286CrossRef
38.
Zurück zum Zitat Ma G, Yue XG, Zhang SL, Rong CR, Wang GB (2011) Preparation and properties of poly(ether ether ketone) composites reinforced by modified wollastonite grafting with silane terminated poly(ether ether ketone) oligomers. J Polym Res 18(6):2045–2053CrossRef Ma G, Yue XG, Zhang SL, Rong CR, Wang GB (2011) Preparation and properties of poly(ether ether ketone) composites reinforced by modified wollastonite grafting with silane terminated poly(ether ether ketone) oligomers. J Polym Res 18(6):2045–2053CrossRef
39.
Zurück zum Zitat Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRef Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRef
Metadaten
Titel
Design and preparation of graphene/poly(ether ether ketone) composites with excellent electrical conductivity
verfasst von
Lilong Yang
Shuling Zhang
Zheng Chen
Yunliang Guo
Jiashuang Luan
Zhi Geng
Guibin Wang
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7940-2

Weitere Artikel der Ausgabe 5/2014

Journal of Materials Science 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.