Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 7/2016

01.07.2016 | Original Article

Design of a haptic device with grasp and push–pull force feedback for a master–slave surgical robot

verfasst von: Zhenkai Hu, Chae-Hyun Yoon, Samuel Byeongjun Park, Yung-Ho Jo

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

We propose a portable haptic device providing grasp (kinesthetic) and push–pull (cutaneous) sensations for optical-motion-capture master interfaces.

Methods

Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator’s hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push–pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master–slave system.

Results

The results demonstrate that both the grasp force feedback and the push–pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master–slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation.

Conclusions

We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push–pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master–slave robot system with our haptic interface in surgical scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mendivil A, Holloway RW, Boggess JF (2009) Emergence of robotic assisted surgery in gynecologic oncology: American perspective. Gynecol Oncol 114(2):S24–S31CrossRefPubMed Mendivil A, Holloway RW, Boggess JF (2009) Emergence of robotic assisted surgery in gynecologic oncology: American perspective. Gynecol Oncol 114(2):S24–S31CrossRefPubMed
2.
Zurück zum Zitat Pisla D, Gherman B, Vaida C, Suciu M, Plitea N (2013) An active hybrid parallel robot for minimally invasive surgery Robot. Com-Int Manuf 29(4):203–221CrossRef Pisla D, Gherman B, Vaida C, Suciu M, Plitea N (2013) An active hybrid parallel robot for minimally invasive surgery Robot. Com-Int Manuf 29(4):203–221CrossRef
3.
Zurück zum Zitat Barbosa JABA, Barayan G, Gridley CM, Sanchez DCJ, Passerotti CC, Houck CS, Nguyen HT (2013) Parent and patient perceptions of robotic vs open urological surgery scars in children. J Urol 190(1):244–250CrossRefPubMed Barbosa JABA, Barayan G, Gridley CM, Sanchez DCJ, Passerotti CC, Houck CS, Nguyen HT (2013) Parent and patient perceptions of robotic vs open urological surgery scars in children. J Urol 190(1):244–250CrossRefPubMed
4.
Zurück zum Zitat Lavie O, Nezhat FR, Unal E, Liedstrand B, Nezhat C, Nezhat CH (2008) Robot-assisted laparoscopic surgery in gynecology: scientific dream or reality? J Minim Invasive Gynecol 15(6):20SCrossRef Lavie O, Nezhat FR, Unal E, Liedstrand B, Nezhat C, Nezhat CH (2008) Robot-assisted laparoscopic surgery in gynecology: scientific dream or reality? J Minim Invasive Gynecol 15(6):20SCrossRef
5.
Zurück zum Zitat Fine HF, Wei W, Goldman RE, Simaan N (2010) Robot-assisted ophthalmic surgery. Can J Ophthalmol 45(6):581–584CrossRefPubMed Fine HF, Wei W, Goldman RE, Simaan N (2010) Robot-assisted ophthalmic surgery. Can J Ophthalmol 45(6):581–584CrossRefPubMed
6.
Zurück zum Zitat Konietschke R, Hagn U, Nickl M, Jorg S, Tobergte A, Passig G, Seibold U, Le-Tien L, Kubler B, Groger M, Frohlich F, Rink C, Albu-Schaffer A, Grebenstein M, Ortmaier T, Hirzinger G (2009) The DLR MiroSurge—a robotic system for surgery. In: IEEE international conference on robotics and automation, pp 1589–1590 Konietschke R, Hagn U, Nickl M, Jorg S, Tobergte A, Passig G, Seibold U, Le-Tien L, Kubler B, Groger M, Frohlich F, Rink C, Albu-Schaffer A, Grebenstein M, Ortmaier T, Hirzinger G (2009) The DLR MiroSurge—a robotic system for surgery. In: IEEE international conference on robotics and automation, pp 1589–1590
7.
Zurück zum Zitat Camarillo DB, Krummel TM, Salisbury JK Jr (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188(4):2–15CrossRef Camarillo DB, Krummel TM, Salisbury JK Jr (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188(4):2–15CrossRef
8.
Zurück zum Zitat Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK (2014) Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Program Biomed 116(2):68–80CrossRef Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK (2014) Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Program Biomed 116(2):68–80CrossRef
9.
Zurück zum Zitat Park SB, Yoon CH, Jang IG, Kang HS, Jo YH (2013) A small scale optical non-restraint master interface for the minimally invasive surgical robot. In: Asian conference on computer aided surgery, pp 64–65 Park SB, Yoon CH, Jang IG, Kang HS, Jo YH (2013) A small scale optical non-restraint master interface for the minimally invasive surgical robot. In: Asian conference on computer aided surgery, pp 64–65
10.
Zurück zum Zitat Hayward V, Astley OR, Cruz-Hernandez M, Grant D, Robles-De-La-Torre G (2004) Haptic interfaces and devices. Sens Rev 24(1):16–29CrossRef Hayward V, Astley OR, Cruz-Hernandez M, Grant D, Robles-De-La-Torre G (2004) Haptic interfaces and devices. Sens Rev 24(1):16–29CrossRef
11.
Zurück zum Zitat Kálmán M, Csillag A (2005) The skin and other diffuse sensory systems. Atlas Sens Organs 5:199–243CrossRef Kálmán M, Csillag A (2005) The skin and other diffuse sensory systems. Atlas Sens Organs 5:199–243CrossRef
12.
Zurück zum Zitat Birznieks I, Jenmalm P, Goodwin AW, Johansson RS (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21(20):8222–8237 Birznieks I, Jenmalm P, Goodwin AW, Johansson RS (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21(20):8222–8237
13.
Zurück zum Zitat Burdea G, Zhuang J, Roskos E, Silver D, Langrana N (1992) A portable dextrous master with force feedback. Presence Teleoper Virtual Environ 1(1):18–28CrossRef Burdea G, Zhuang J, Roskos E, Silver D, Langrana N (1992) A portable dextrous master with force feedback. Presence Teleoper Virtual Environ 1(1):18–28CrossRef
14.
Zurück zum Zitat Schostek S, Schurr MO, Buess GF (2009) Review on aspects of artificial tactile feedback in laparoscopic surgery. Med Eng Phys 31(8):887–898CrossRefPubMed Schostek S, Schurr MO, Buess GF (2009) Review on aspects of artificial tactile feedback in laparoscopic surgery. Med Eng Phys 31(8):887–898CrossRefPubMed
15.
Zurück zum Zitat Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery—a review. Mechatronics 13(10):1163–1177CrossRef Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery—a review. Mechatronics 13(10):1163–1177CrossRef
16.
Zurück zum Zitat Díaz I, Gil JJ, Louredo M (2014) A haptic pedal for surgery assistance. Comput Methods Program Biomed 116(2):97–104CrossRef Díaz I, Gil JJ, Louredo M (2014) A haptic pedal for surgery assistance. Comput Methods Program Biomed 116(2):97–104CrossRef
17.
Zurück zum Zitat King CH, Culjat MO, Franco ML, Bisley JW, Dutson E, Grundfest WS (2008) Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. IEEE Trans Bio-Med Eng 55(11):2593–2600CrossRef King CH, Culjat MO, Franco ML, Bisley JW, Dutson E, Grundfest WS (2008) Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. IEEE Trans Bio-Med Eng 55(11):2593–2600CrossRef
18.
Zurück zum Zitat Wagner CR, Lederman SJ, Howe RD (2002) A tactile shape display using RC servomotors. In: Proceedings 10th symposium on haptic interfaces for virtual environment and teleoperator systems, pp 354–355 Wagner CR, Lederman SJ, Howe RD (2002) A tactile shape display using RC servomotors. In: Proceedings 10th symposium on haptic interfaces for virtual environment and teleoperator systems, pp 354–355
19.
Zurück zum Zitat Ottermo MV, Stavdahl O, Johansen TA (2005) Electromechanical design of a miniature tactile shape display for minimally invasive surgery. In: Eurohaptics conference, pp 561–562 Ottermo MV, Stavdahl O, Johansen TA (2005) Electromechanical design of a miniature tactile shape display for minimally invasive surgery. In: Eurohaptics conference, pp 561–562
20.
Zurück zum Zitat Pacchierotti C, Chinello F, Malvezzi M, Meli L, Prattichizzo D (2012) Two finger grasping simulation with cutaneous and kinesthetic force feedback. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. Springer, Berlin, pp 373–382 Pacchierotti C, Chinello F, Malvezzi M, Meli L, Prattichizzo D (2012) Two finger grasping simulation with cutaneous and kinesthetic force feedback. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. Springer, Berlin, pp 373–382
21.
Zurück zum Zitat Chinello F, Malvezzi M, Pacchierotti C, Prattichizzo D (2012) A three DoFs wearable tactile display for exploration and manipulation of virtual objects. In: IEEE haptics symposium, pp 71–76 Chinello F, Malvezzi M, Pacchierotti C, Prattichizzo D (2012) A three DoFs wearable tactile display for exploration and manipulation of virtual objects. In: IEEE haptics symposium, pp 71–76
22.
Zurück zum Zitat Solazzi M, Frisoli A, Bergamasco M (2010) Design of a cutaneous fingertip display for improving haptic exploration of virtual objects. In: 19th IEEE international symposium on robot and human interactive communication, pp 1–6 Solazzi M, Frisoli A, Bergamasco M (2010) Design of a cutaneous fingertip display for improving haptic exploration of virtual objects. In: 19th IEEE international symposium on robot and human interactive communication, pp 1–6
23.
Zurück zum Zitat Prattichizzo D, Pacchierotti C, Rosati G (2012) Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans Haptics 5(4):289–300CrossRefPubMed Prattichizzo D, Pacchierotti C, Rosati G (2012) Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans Haptics 5(4):289–300CrossRefPubMed
24.
Zurück zum Zitat Minamizawa K, Kajimoto H, Kawakami N, Tachi S (2007) A wearable haptic display to present the gravity sensation—preliminary observations and device design. In: EuroHaptics conference, pp 133–138 Minamizawa K, Kajimoto H, Kawakami N, Tachi S (2007) A wearable haptic display to present the gravity sensation—preliminary observations and device design. In: EuroHaptics conference, pp 133–138
25.
Zurück zum Zitat Schiele A, Letier P, van der Linde R, Van der Helm F (2006) Bowden cable actuator for force-feedback exoskeletons. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3599–3604 Schiele A, Letier P, van der Linde R, Van der Helm F (2006) Bowden cable actuator for force-feedback exoskeletons. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3599–3604
26.
Zurück zum Zitat Hong MB, Jo YH (2012) Design and evaluation of 2-DOFs force sensing forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans Robot 28(4):932–941CrossRef Hong MB, Jo YH (2012) Design and evaluation of 2-DOFs force sensing forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans Robot 28(4):932–941CrossRef
27.
Zurück zum Zitat Kwon DS, Woo KY, Song SK, Kim WS, Cho HS (1998) Microsurgical telerobot system. In: Proceedings IEEE/RSJ international conference intell. robot. syst., pp 945–950 Kwon DS, Woo KY, Song SK, Kim WS, Cho HS (1998) Microsurgical telerobot system. In: Proceedings IEEE/RSJ international conference intell. robot. syst., pp 945–950
28.
Zurück zum Zitat Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31:499–508CrossRef Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31:499–508CrossRef
29.
Zurück zum Zitat Ottermo MV, Stavdahl O, Johansen TA (2009) A remote palpation instrument for laparoscopic surgery: design and performance. Minim Invasive Therapy 18:259–272CrossRef Ottermo MV, Stavdahl O, Johansen TA (2009) A remote palpation instrument for laparoscopic surgery: design and performance. Minim Invasive Therapy 18:259–272CrossRef
30.
Zurück zum Zitat Meli L, Pacchierotti C, Prattichizzo D (2014) Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction. IEEE Trans Bio-med Eng 61(4):1318–1327CrossRef Meli L, Pacchierotti C, Prattichizzo D (2014) Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction. IEEE Trans Bio-med Eng 61(4):1318–1327CrossRef
Metadaten
Titel
Design of a haptic device with grasp and push–pull force feedback for a master–slave surgical robot
verfasst von
Zhenkai Hu
Chae-Hyun Yoon
Samuel Byeongjun Park
Yung-Ho Jo
Publikationsdatum
01.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 7/2016
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-015-1324-9

Weitere Artikel der Ausgabe 7/2016

International Journal of Computer Assisted Radiology and Surgery 7/2016 Zur Ausgabe