Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Design of AC–DC Charge Pump

verfasst von : Toru Tanzawa

Erschienen in: On-chip High-Voltage Generator Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses circuit theory of AC–DC charge pump circuits. The input is a continuous wave with a single frequency or a multi-sine wave with multiple frequencies. An analytical, closed-form AC–DC charge pump voltage multiplier model is described to show the dependency of output current and input power on circuit and device parameters for continuous wave AC–DC charge pump. Then, it is expanded for multi-sine wave AC–DC charge pump. Analysis enables circuit designers to estimate circuit parameters, such as the number of stages and capacitance per stage, and device parameters such as saturation current (in the case of diodes) or transconductance (in the case of MOSFETs). In addition, design optimizations and the impact of AC power source impedance on output power are investigated.
Even though switched-capacitor voltage multipliers were originated with AC–DC, i.e., AC input and DC output, by Greinacher and Cockcroft–Walton, most voltage multipliers for integrated circuits (ICs) have been DC–DC, i.e., DC input and DC output for decades because almost all ICs work with DC input. Recently, wireless sensing nodes and implantable microelectronic devices have been attracting the interest of researchers and engineers. These devices use AC–DC rectifier voltage multipliers to receive power or to harvest energy in AC form. These applications require low power (typically nothing higher than hundreds of μW) and have small form factors—features that are well-matched with the features of voltage multipliers with no inductor or any magnetic element required. Section 4.1 discusses continuous wave AC–DC charge pump voltage multiplier which operates at a single frequency. Section 4.1.1 provides a circuit model which only includes DC voltage source, output resistance, and internal capacitance. Each parameter is expressed by circuit and device parameters. Section 4.1.2 investigates design and device parameter sensitivity on the pump performance. Section 4.1.3 discusses optimum design for maximizing output current at a given output voltage and for making a balance between circuit area and input power. Section 4.1.4 studies the impact of AC power source impedance on the pump performance and the dependency of design parameters on the AC power source impedance. Section 4.2 expands into multi-sine wave voltage multipliers where the AC signal has multiple frequencies. Section 4.2.1 provides a circuit model. One can estimate output and input power using the model equations when design and device parameters are given. Section 4.2.2 shows design and device parameter sensitivity on the pump performance. Section 4.2.3 investigates the effectiveness of multi-sine waves over continuous waves in terms of power efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat S.M. Sze, K. K. Ng, Chapter 3 metal-semiconductor contacts, in Physics of Semiconductor Devices (John Wiley & Sons, 2007) S.M. Sze, K. K. Ng, Chapter 3 metal-semiconductor contacts, in Physics of Semiconductor Devices (John Wiley & Sons, 2007)
Zurück zum Zitat T. Sakurai, A.R. Newton, Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE J. Solid State Circ. 25(2), 584–594 (1990)CrossRef T. Sakurai, A.R. Newton, Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE J. Solid State Circ. 25(2), 584–594 (1990)CrossRef
Zurück zum Zitat S. Meninger, T.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J. Lang, Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integrat. Syst. 9(1), 64–76 (2001)CrossRef S. Meninger, T.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J. Lang, Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integrat. Syst. 9(1), 64–76 (2001)CrossRef
Zurück zum Zitat G. Papotto, F. Carrara, G. Palmisano, A 90-nm CMOS threshold-compensated RF energy harvester. IEEE J. Solid State Circ. 46(9), 1985–1997 (2011)CrossRef G. Papotto, F. Carrara, G. Palmisano, A 90-nm CMOS threshold-compensated RF energy harvester. IEEE J. Solid State Circ. 46(9), 1985–1997 (2011)CrossRef
Zurück zum Zitat T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, in A 950 MHz Rectifier Circuit for Sensor Networks with 10 m-Distance. IEEE International Solid-State Circuits Conference Digest of Technical Paper, February 2005, pp. 256–597 T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, in A 950 MHz Rectifier Circuit for Sensor Networks with 10 m-Distance. IEEE International Solid-State Circuits Conference Digest of Technical Paper, February 2005, pp. 256–597
Zurück zum Zitat G. De Vita, G. Iannacccone, Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans. Microw. Theor. Tech. 53(9), 2978–2990 (2005)CrossRef G. De Vita, G. Iannacccone, Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans. Microw. Theor. Tech. 53(9), 2978–2990 (2005)CrossRef
Zurück zum Zitat R.E. Barnett, J. Liu, S. Lazar, A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders. IEEE J. Solid State Circ. 44(2), 354–370 (2009)CrossRef R.E. Barnett, J. Liu, S. Lazar, A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders. IEEE J. Solid State Circ. 44(2), 354–370 (2009)CrossRef
Zurück zum Zitat J. Yi, W.-H. Ki, C.-Y. Tsui, Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Trans. Circ. Syst. I. Reg. Papers 54(1), 153–166 (2007)CrossRef J. Yi, W.-H. Ki, C.-Y. Tsui, Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Trans. Circ. Syst. I. Reg. Papers 54(1), 153–166 (2007)CrossRef
Zurück zum Zitat A.J. Cardoso, L.G. de Carli, C. Galup-Montoro, M.C. Schneider, Analysis of the rectifier circuit valid down to its low-voltage limit. IEEE Trans. Circ. Syst. I. Reg. Papers 59(1), 106–112 (2012)CrossRef A.J. Cardoso, L.G. de Carli, C. Galup-Montoro, M.C. Schneider, Analysis of the rectifier circuit valid down to its low-voltage limit. IEEE Trans. Circ. Syst. I. Reg. Papers 59(1), 106–112 (2012)CrossRef
Zurück zum Zitat R.J. Gutmann, J.M. Borrego, Power combining in an array of microwave power rectifiers. IEEE Trans. Microw. Theor. Tech. 27(12), 958–968 (1979)CrossRef R.J. Gutmann, J.M. Borrego, Power combining in an array of microwave power rectifiers. IEEE Trans. Microw. Theor. Tech. 27(12), 958–968 (1979)CrossRef
Zurück zum Zitat T.W. Yoo, K. Chang, Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microw. Theor. Tech. 40(6), 1259–1266 (1992)CrossRef T.W. Yoo, K. Chang, Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microw. Theor. Tech. 40(6), 1259–1266 (1992)CrossRef
Zurück zum Zitat M.S. Trotter, J.D. Griffin, G.D. Durgin, in Power-optimized waveforms for improving the range and reliability of RFID systems. IEEE International Conference on RFID, 2009, pp. 80–87 M.S. Trotter, J.D. Griffin, G.D. Durgin, in Power-optimized waveforms for improving the range and reliability of RFID systems. IEEE International Conference on RFID, 2009, pp. 80–87
Zurück zum Zitat C.R. Valenta, G.D. Durgin, in Rectenna performance under power-optimized waveform excitation. IEEE International Conference on RFID, 2013, pp. 237–244 C.R. Valenta, G.D. Durgin, in Rectenna performance under power-optimized waveform excitation. IEEE International Conference on RFID, 2013, pp. 237–244
Zurück zum Zitat T. Tanzawa, in An Analytical Model of AC-DC Voltage Multipliers. IEEE International Conference on Electronics Circuits and Systems, December 2014, pp. 323–326 T. Tanzawa, in An Analytical Model of AC-DC Voltage Multipliers. IEEE International Conference on Electronics Circuits and Systems, December 2014, pp. 323–326
Zurück zum Zitat T. Tanzawa, in An Analytical Model of Multi-Sine AC-DC Voltage Multiplier. IEEE International Conference on Circuits and Systems, pp. 1354–1357 T. Tanzawa, in An Analytical Model of Multi-Sine AC-DC Voltage Multiplier. IEEE International Conference on Circuits and Systems, pp. 1354–1357
Metadaten
Titel
Design of AC–DC Charge Pump
verfasst von
Toru Tanzawa
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-21975-2_4

Neuer Inhalt