Skip to main content

2021 | OriginalPaper | Buchkapitel

Design of Additively Manufactured Heat-Generating Structures

verfasst von : Karl Hilbig, Hagen Watschke, Thomas Vietor

Erschienen in: Technologies for economic and functional lightweight design

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-material additive manufacturing provides new design freedom for integration of functions and opens new possibilities in innovative product design due to local material variations. In particular, material extrusion (MEX) allows for combination of different industrial-grade thermoplastic materials to enhance the functionality of a product by integration of functions. Thus, for instance, electrically conductive structures or heat-generating surfaces can be incorporated in a part by using conductive polymers filled by carbon black (CB), carbon nanotubes (CNT) or copper nanowires (CNW).
The resultant properties of additively manufactured parts are mainly influenced by the choice of process parameters. In addition to mechanical properties (e.g. stiffness and strength), electrical properties are also like resistivity and volumetric power density influenced. In order to design heat-generating structures in a targeted manner, the dependencies between process parameters and electrical performance must be determined. Thus, in this article the dependencies between the process parameters extrusion temperature, raster angle orientation and extrusion speed are investigated experimentally. In order to adjust the resistivity of an additively manufactured part and surface temperature by resistive heating, these dependencies are transferred into mathematical descriptions. The setup of design of experiment is based on model selection for analytical description of material-specific characterization.
In order to demonstrate the potential of additively manufactured heating structures by material extrusion a garnish mold with incorporated heating panels is built as multi-material design. Finally, the heating of the prototypical panel is analyzed by thermographic analyses. Thus, the approach for achieving certain surface temperatures by varying process parameters and part geometry based on the mathematical description is validated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Dijkshoorn, A., Schouten, M., Wolterink, G., Sanders, R., Krijnen, G.: Characterizing the electrical properties of anisotropic, 3D-printed conductive sheets. In: 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), July 2019. https://doi.org/10.1109/FLEPS.2019.8792279 Dijkshoorn, A., Schouten, M., Wolterink, G., Sanders, R., Krijnen, G.: Characterizing the electrical properties of anisotropic, 3D-printed conductive sheets. In: 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), July 2019. https://​doi.​org/​10.​1109/​FLEPS.​2019.​8792279
7.
Zurück zum Zitat Hedges, M.: Additive manufacturing process chains for 3D printed electronics. In: Rapid. Tech- International Trade Show Conference for Additive Manufacturing, part 5, pp. 152–171, June 2017 Hedges, M.: Additive manufacturing process chains for 3D printed electronics. In: Rapid. Tech- International Trade Show Conference for Additive Manufacturing, part 5, pp. 152–171, June 2017
15.
Zurück zum Zitat Zapciu, A., Constantin, G.: Additive manufacturing integration of thermoplastic conductive material in intelligent robotic end effector systems. Proc. Manuf. Syst. 11, 201–206 (2016) Zapciu, A., Constantin, G.: Additive manufacturing integration of thermoplastic conductive material in intelligent robotic end effector systems. Proc. Manuf. Syst. 11, 201–206 (2016)
Metadaten
Titel
Design of Additively Manufactured Heat-Generating Structures
verfasst von
Karl Hilbig
Hagen Watschke
Thomas Vietor
Copyright-Jahr
2021
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-62924-6_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.