Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Designing and Prototyping Adaptive Structures—An Energy-Based Approach Beyond Lightweight Design

verfasst von : Gennaro Senatore

Erschienen in: Robotic Building

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents an overview of an original methodology to design optimum adaptive structures with minimum whole-life energy. Structural adaptation is here understood as a simultaneous change of the shape and internal load-path (i.e. internal forces). The whole-life energy of the structure comprises an embodied part in the material and an operational part for structural adaptation. Instead of using more material to cope with the effect of rare but strong loading events, a strategically integrated actuation system redirects the internal load path to homogenise the stresses and to keep deflections within limits by changing the shape of the structure. This method has been used to design planar and spatial reticular structures of complex layout. Simulations show that the adaptive solution can save significant amount of the whole-life energy compared to weight-optimised passive structures. A tower supported by an exo-skeleton structural system is taken as a case study showing the potential for application of this design method to architectural buildings featuring high slenderness (e.g. long span and high-rise structures). The methodology has been successfully tested on a prototype adaptive structure whose main features are described in this chapter. Experimental tests confirmed the feasibility of the design process when applied to a real structure and that up to 70% of the whole-life energy can be saved compared to equivalent passive structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Rohman M, Leipholz H (1983) Active control of tall buildings. J Struct Eng 109(3):628–645CrossRef Abdel-Rohman M, Leipholz H (1983) Active control of tall buildings. J Struct Eng 109(3):628–645CrossRef
Zurück zum Zitat Adam B, Smith IF (2008) Active tensegrity: a control framework for an adaptive civil-engineering structure. Comput Struct 86(23–24):2215–2223CrossRef Adam B, Smith IF (2008) Active tensegrity: a control framework for an adaptive civil-engineering structure. Comput Struct 86(23–24):2215–2223CrossRef
Zurück zum Zitat Bani-Hani K, Ghaboussi J (1998) Nonlinear structural control using neural networks. J Eng Mech 124(3):319–327CrossRef Bani-Hani K, Ghaboussi J (1998) Nonlinear structural control using neural networks. J Eng Mech 124(3):319–327CrossRef
Zurück zum Zitat Barker GM, Staebler J, Barth K (2011) Serviceability limits and economical steel bridge design (report no. FHWA-HIF-11-044). U.S. Department of Transportation, Washington, DC Barker GM, Staebler J, Barth K (2011) Serviceability limits and economical steel bridge design (report no. FHWA-HIF-11-044). U.S. Department of Transportation, Washington, DC
Zurück zum Zitat Barnes MR (1977) Form finding and analysis of tension space structures by dynamic relaxation. Doctoral dissertation, City University, London Barnes MR (1977) Form finding and analysis of tension space structures by dynamic relaxation. Doctoral dissertation, City University, London
Zurück zum Zitat Campanile LF (2005) Initial thoughts on weight penalty effects in shape-adaptable systems. J Intell Mater Syst Struct 16:47–56CrossRef Campanile LF (2005) Initial thoughts on weight penalty effects in shape-adaptable systems. J Intell Mater Syst Struct 16:47–56CrossRef
Zurück zum Zitat Connor JJ (2002) Introduction to structural motion control. Pearson Education, Boston Connor JJ (2002) Introduction to structural motion control. Pearson Education, Boston
Zurück zum Zitat Crisfield M (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng 81(2):131–150CrossRef Crisfield M (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng 81(2):131–150CrossRef
Zurück zum Zitat Day A (1965) An introduction to dynamic relaxation. Engineer 220–221 Day A (1965) An introduction to dynamic relaxation. Engineer 220–221
Zurück zum Zitat Domer B, Smith I (2005) An active structure that learns. J Comput. Civ. Eng 19(1):16–24CrossRef Domer B, Smith I (2005) An active structure that learns. J Comput. Civ. Eng 19(1):16–24CrossRef
Zurück zum Zitat Dorf RC, Bishop RH (2011) Modern control systems, 12th ed., Pearson Dorf RC, Bishop RH (2011) Modern control systems, 12th ed., Pearson
Zurück zum Zitat Felippa C, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2336CrossRef Felippa C, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2336CrossRef
Zurück zum Zitat Fest E, Shea K, Domer B, Smith F (2003) Adjustable tensegrity structures. J Struct Eng 129:515–526CrossRef Fest E, Shea K, Domer B, Smith F (2003) Adjustable tensegrity structures. J Struct Eng 129:515–526CrossRef
Zurück zum Zitat Flori JP, Delpech GG (2010) Stavros Niarchos foundation cultural center in Athens Part I: climatic analysis. Technical report, Centre Scientifique et Tecnique du Batiment, Nantes Flori JP, Delpech GG (2010) Stavros Niarchos foundation cultural center in Athens Part I: climatic analysis. Technical report, Centre Scientifique et Tecnique du Batiment, Nantes
Zurück zum Zitat Hammond G, Jones C (2008) Embodied energy and carbon in construction materials. In: Proceedings of the institution of civil engineers—energy, vol 161, no 2, pp 87–98CrossRef Hammond G, Jones C (2008) Embodied energy and carbon in construction materials. In: Proceedings of the institution of civil engineers—energy, vol 161, no 2, pp 87–98CrossRef
Zurück zum Zitat Hasse A, Campanile F (2009) Design of compliant mechanisms with selective compliance. Smart Mater Struct 18(11)CrossRef Hasse A, Campanile F (2009) Design of compliant mechanisms with selective compliance. Smart Mater Struct 18(11)CrossRef
Zurück zum Zitat Henry A, Kam C, Smith M, Lewis C, King M, Boulter N, Hoad P, Wong R, Munro S and Ming S (2016) Singapore sports hub: engineering the national stadium. Struct Eng 94(9) Henry A, Kam C, Smith M, Lewis C, King M, Boulter N, Hoad P, Wong R, Munro S and Ming S (2016) Singapore sports hub: engineering the national stadium. Struct Eng 94(9)
Zurück zum Zitat Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. In: Proceedings: mathematical physical and engineering sciences, vol 453, pp 2185–2205CrossRef Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. In: Proceedings: mathematical physical and engineering sciences, vol 453, pp 2185–2205CrossRef
Zurück zum Zitat Jenkins C (2005) Compliant structures in nature and engineering, 1st edn. WIT Press Jenkins C (2005) Compliant structures in nature and engineering, 1st edn. WIT Press
Zurück zum Zitat Korkmaz S (2011) A review of active structural control: challenges for engineering informatics. Comput Struct 89:2113–2132CrossRef Korkmaz S (2011) A review of active structural control: challenges for engineering informatics. Comput Struct 89:2113–2132CrossRef
Zurück zum Zitat Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T, Knippers J (2011) Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir Biomimet 6:1–7CrossRef Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T, Knippers J (2011) Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir Biomimet 6:1–7CrossRef
Zurück zum Zitat Neuhäuser S (2014) Untersuchungen zur Homogenisierung von Spannungsfeldern bei adaptiven Schalentragwerken mittels Auflagerverschiebung. University of Stuttgart (ILEK), Stuttgart Neuhäuser S (2014) Untersuchungen zur Homogenisierung von Spannungsfeldern bei adaptiven Schalentragwerken mittels Auflagerverschiebung. University of Stuttgart (ILEK), Stuttgart
Zurück zum Zitat Nowak AS, Collins KR (2012) Reliability of structures, 2nd edn. Taylor & Francis Nowak AS, Collins KR (2012) Reliability of structures, 2nd edn. Taylor & Francis
Zurück zum Zitat Patnaik S, Gendy A, Berke S, Hopkins D (1998) Modified fully utilized design (MFUD) method for stress and displacement constraints. Int J Numer Meth Eng 41:1171–1194CrossRef Patnaik S, Gendy A, Berke S, Hopkins D (1998) Modified fully utilized design (MFUD) method for stress and displacement constraints. Int J Numer Meth Eng 41:1171–1194CrossRef
Zurück zum Zitat Preumont A, de Marneffe B, Deraemaeker A, Bossensb F (2008) The damping of a truss structure with a piezoelectric transducer. Comput Struct 86(3–5):227–239CrossRef Preumont A, de Marneffe B, Deraemaeker A, Bossensb F (2008) The damping of a truss structure with a piezoelectric transducer. Comput Struct 86(3–5):227–239CrossRef
Zurück zum Zitat Previtali F, Ermanni P (2012) Performance of a non-tapered 3D morphing wing with integrated compliant ribs. J Smart Mater Struct 21:1–12CrossRef Previtali F, Ermanni P (2012) Performance of a non-tapered 3D morphing wing with integrated compliant ribs. J Smart Mater Struct 21:1–12CrossRef
Zurück zum Zitat Reksowardojo AP, Senatore G, Smith IF (2017) Large and reversible shape changes as a strategy for structural adaptation. In: International associtaion for shell and spatial structures, Hamburg Reksowardojo AP, Senatore G, Smith IF (2017) Large and reversible shape changes as a strategy for structural adaptation. In: International associtaion for shell and spatial structures, Hamburg
Zurück zum Zitat Reinhorn AST, Lin R, Riley M (1992) Active bracing sytem: a full scale implementation of active control. National Center for Earthquake Engineering Research, Buffalo Reinhorn AST, Lin R, Riley M (1992) Active bracing sytem: a full scale implementation of active control. National Center for Earthquake Engineering Research, Buffalo
Zurück zum Zitat Rodellar J, Mañosa V, Monroy C (2002) An active tendon control scheme for cable-stayed bridges with model uncertainties and seismic excitation. Struct Control Health Monit 9(1):75–94CrossRef Rodellar J, Mañosa V, Monroy C (2002) An active tendon control scheme for cable-stayed bridges with model uncertainties and seismic excitation. Struct Control Health Monit 9(1):75–94CrossRef
Zurück zum Zitat Santos FA, Rodrigues A, Micheletti A (2015) Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys. Smart Mater Struct 24:1–10CrossRef Santos FA, Rodrigues A, Micheletti A (2015) Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys. Smart Mater Struct 24:1–10CrossRef
Zurück zum Zitat Schnellenbach MH, Steiner D (2013) Self-tuning closed-loop fuzzy logic control algorithm for adaptive prestressed structures. Struct Eng Int 163–172 Schnellenbach MH, Steiner D (2013) Self-tuning closed-loop fuzzy logic control algorithm for adaptive prestressed structures. Struct Eng Int 163–172
Zurück zum Zitat Senatore G, Duffour P, Hanna S, Labbe F, Winslow P (2011) Adaptive structures for whole life energy savings. Int Assoc Shell Spat Struct (IASS) 52(4):233–240 Senatore G, Duffour P, Hanna S, Labbe F, Winslow P (2011) Adaptive structures for whole life energy savings. Int Assoc Shell Spat Struct (IASS) 52(4):233–240
Zurück zum Zitat Senatore G, Duffour P, Winslow P, Hanna S, Wise C (2013) Designing adaptive structures for whole life energy savings. In: Proceedings of the fifth international conference on structural engineering, mechanics & computation, Cape Town. Taylor & Francis Group, London, pp 2105–2110 Senatore G, Duffour P, Winslow P, Hanna S, Wise C (2013) Designing adaptive structures for whole life energy savings. In: Proceedings of the fifth international conference on structural engineering, mechanics & computation, Cape Town. Taylor & Francis Group, London, pp 2105–2110
Zurück zum Zitat Senatore G, Piker D (2015) Interactive real-time physics: an intuitive approach to form-finding and structural analysis for design and education. Comput Aided Des 61:32–41CrossRef Senatore G, Piker D (2015) Interactive real-time physics: an intuitive approach to form-finding and structural analysis for design and education. Comput Aided Des 61:32–41CrossRef
Zurück zum Zitat Senatore G, Duffour P, Winslow P (2018a) Energy and cost assessment of adaptive structures: Case studies. J Struct Eng (ASCE) 144(8):04018107CrossRef Senatore G, Duffour P, Winslow P (2018a) Energy and cost assessment of adaptive structures: Case studies. J Struct Eng (ASCE) 144(8):04018107CrossRef
Zurück zum Zitat Senatore G, Duffour P, Winslow P (2018b) Exploring the domain of application of adaptive structures. Eng Struct 167:608–628 Senatore G, Duffour P, Winslow P (2018b) Exploring the domain of application of adaptive structures. Eng Struct 167:608–628
Zurück zum Zitat Senatore G, Duffour P, Winslow P, Wise C (2018c) Shape control and whole-life energy assessment of an “infinitely stiff” prototype adaptive structure. Smart Mater Struct 27(1):015022CrossRef Senatore G, Duffour P, Winslow P, Wise C (2018c) Shape control and whole-life energy assessment of an “infinitely stiff” prototype adaptive structure. Smart Mater Struct 27(1):015022CrossRef
Zurück zum Zitat Senatore G (2016) Adaptive building structures. Doctoral dissertation, University College London, London Senatore G (2016) Adaptive building structures. Doctoral dissertation, University College London, London
Zurück zum Zitat Senatore G, Wang Q, Bier H, Teuffel P (2017) The use of variable stiffness joints in adaptive structures. In: International association for shells and spatial structures, Hamburg Senatore G, Wang Q, Bier H, Teuffel P (2017) The use of variable stiffness joints in adaptive structures. In: International association for shells and spatial structures, Hamburg
Zurück zum Zitat Shea K, Smith I (1998) Intelligent structures: a new direction in structural control, Berlin Shea K, Smith I (1998) Intelligent structures: a new direction in structural control, Berlin
Zurück zum Zitat Sobek W (1987) Auf pneumatisch gestützten Schalungen hergestellte Betonschalen. Doctoral dissertation, University of Stuttgart, Stuttgart Sobek W (1987) Auf pneumatisch gestützten Schalungen hergestellte Betonschalen. Doctoral dissertation, University of Stuttgart, Stuttgart
Zurück zum Zitat Sobek W, Teuffel P (2001) Adaptive systems in architecture and structural engineering. In: Liu SC (ed) Smart structures and materials 2001: smart systems for bridges, structures, and highways, Proceedings of SPIE Sobek W, Teuffel P (2001) Adaptive systems in architecture and structural engineering. In: Liu SC (ed) Smart structures and materials 2001: smart systems for bridges, structures, and highways, Proceedings of SPIE
Zurück zum Zitat Soong TT (1988) State of the art review: active structural control in civil engineering. Eng Struct 10(2):74–84 Soong TT (1988) State of the art review: active structural control in civil engineering. Eng Struct 10(2):74–84
Zurück zum Zitat Soong TT, Pitarresi JM (1987) Optimal design of active structures. Comput Appl Struct Eng 579–591 Soong TT, Pitarresi JM (1987) Optimal design of active structures. Comput Appl Struct Eng 579–591
Zurück zum Zitat Teuffel P (2004) Entwerfen adaptiver strukturen. Doctoral dissertation, University of Stuttgart, ILEK, Struttgart Teuffel P (2004) Entwerfen adaptiver strukturen. Doctoral dissertation, University of Stuttgart, ILEK, Struttgart
Zurück zum Zitat Tibert G (2002) Deployable tensegrity structures for space applications. Doctoral dissertation, Royal Institute of Technology, Stockholm Tibert G (2002) Deployable tensegrity structures for space applications. Doctoral dissertation, Royal Institute of Technology, Stockholm
Zurück zum Zitat Utku S (1998) Theory of adaptive structures: incorporating intelligence into engineered products. CRC Press LLC, Boca Raban Utku S (1998) Theory of adaptive structures: incorporating intelligence into engineered products. CRC Press LLC, Boca Raban
Zurück zum Zitat Veuve NW, Safei SD, Smith IFC (2015) Deployment of a tensegrity footbridge. J Struct Eng 141(11):1–8CrossRef Veuve NW, Safei SD, Smith IFC (2015) Deployment of a tensegrity footbridge. J Struct Eng 141(11):1–8CrossRef
Zurück zum Zitat Vincent JFV (1990) Structural biomaterials. Princeton University Press, Princeton Vincent JFV (1990) Structural biomaterials. Princeton University Press, Princeton
Zurück zum Zitat Wada B, Fanson J, Crawley E (1990) Adaptive structures. J Intell Mater Syst Struct 1:157–174CrossRef Wada B, Fanson J, Crawley E (1990) Adaptive structures. J Intell Mater Syst Struct 1:157–174CrossRef
Zurück zum Zitat Weilandt A (2007) Adaptivität bei Flächentragwerken. ILEK, University of Stuttgart, Stuttgart Weilandt A (2007) Adaptivität bei Flächentragwerken. ILEK, University of Stuttgart, Stuttgart
Zurück zum Zitat Xu B, Wu S, Yokoyama K (2003) Neural networks for decentralized control of cable-stayed bridge. J Bridge Eng (ASCE) 8:229–236CrossRef Xu B, Wu S, Yokoyama K (2003) Neural networks for decentralized control of cable-stayed bridge. J Bridge Eng (ASCE) 8:229–236CrossRef
Zurück zum Zitat Yao J (1972) Concept of structural control. ASCE J Struct Control 98:1567–1574 Yao J (1972) Concept of structural control. ASCE J Struct Control 98:1567–1574
Zurück zum Zitat Ziegler F (2005) Computational aspects of structural shape control. Comput Struct 83:1191–1204CrossRef Ziegler F (2005) Computational aspects of structural shape control. Comput Struct 83:1191–1204CrossRef
Zurück zum Zitat Zuk W, Clark RH (1970) Kinetic architecture. Van Nostrand Reinhold, New York Zuk W, Clark RH (1970) Kinetic architecture. Van Nostrand Reinhold, New York
Metadaten
Titel
Designing and Prototyping Adaptive Structures—An Energy-Based Approach Beyond Lightweight Design
verfasst von
Gennaro Senatore
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-70866-9_8