Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Designing Meanders

verfasst von : Andreas Grimmer, Robert Wille

Erschienen in: Designing Droplet Microfluidic Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When drawing physical designs of microfluidic devices, designers often have to handle re-occurring entities. Meander channels are one example, which are frequently used in different platforms but always have to fit the respective application and design rules. This chapter presents a method which is capable of automatically generating user-defined, two-dimensional designs of fluidic meander channels facilitating fluidic hydrodynamic resistances. This method is distributed as an online tool called Meander Designer and implements specific design rules as it considers the user’s needs and fabrication requirements. The compliance of the meanders generated by the Meander Designer is confirmed by fabricating devices using the generated designs and comparing whether the resulting devices indeed realize the desired specification. To this end, two case studies are considered: first, the realization of dedicated fluidic resistances and, second, the realization of dedicated mixing ratios of fluids. The results demonstrate the versatility of the method regarding application and technology. Overall, the freely accessible online tool with its flexibility and simplicity renders manual drawing of meanders obsolete and, hence, allows for a faster, more straightforward design process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
8.
Zurück zum Zitat A. Bjorck, Numerical Methods for Least Squares Problems, vol. 51 (SIAM, Philadelphia, 1996)CrossRef A. Bjorck, Numerical Methods for Least Squares Problems, vol. 51 (SIAM, Philadelphia, 1996)CrossRef
26.
Zurück zum Zitat S.K. Dertinger, D.T. Chiu, N.L. Jeon, G.M. Whitesides, Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73(6), 1240–1246 (2001)CrossRef S.K. Dertinger, D.T. Chiu, N.L. Jeon, G.M. Whitesides, Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73(6), 1240–1246 (2001)CrossRef
29.
Zurück zum Zitat Y. Elani, X.C.I. Solvas, J.B. Edel, R.V. Law, O. Ces, Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem. Commun. 52(35), 5961–5964 (2016)CrossRef Y. Elani, X.C.I. Solvas, J.B. Edel, R.V. Law, O. Ces, Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem. Commun. 52(35), 5961–5964 (2016)CrossRef
31.
Zurück zum Zitat P. Frank, S. Haefner, M. Elstner, A. Richter, Fully-programmable, low-cost, “do-it-yourself” pressure source for general purpose use in the microfluidic laboratory. Inventions 1(2), 13 (2016)CrossRef P. Frank, S. Haefner, M. Elstner, A. Richter, Fully-programmable, low-cost, “do-it-yourself” pressure source for general purpose use in the microfluidic laboratory. Inventions 1(2), 13 (2016)CrossRef
47.
Zurück zum Zitat A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)CrossRef A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)CrossRef
59.
Zurück zum Zitat P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths. Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRef P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths. Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRef
61.
Zurück zum Zitat L. Hecht, J. Philipp, K. Mattern, A. Dietzel, C.-P. Klages, Controlling wettability in paper by atmospheric-pressure microplasma processes to be used in μpad fabrication. Microfluid. Nanofluid. 20(1), 25 (2016) L. Hecht, J. Philipp, K. Mattern, A. Dietzel, C.-P. Klages, Controlling wettability in paper by atmospheric-pressure microplasma processes to be used in μpad fabrication. Microfluid. Nanofluid. 20(1), 25 (2016)
70.
Zurück zum Zitat K. Karamdad, R. Law, J. Seddon, N. Brooks, O. Ces, Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Lab Chip 15(2), 557–562 (2015)CrossRef K. Karamdad, R. Law, J. Seddon, N. Brooks, O. Ces, Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Lab Chip 15(2), 557–562 (2015)CrossRef
78.
Zurück zum Zitat M. Lake, C. Narciso, K. Cowdrick, T. Storey, S. Zhang, J. Zartman, D. Hoelzle, Microfluidic device design, fabrication, and testing protocols. Protocol Exchange 10 (2015) M. Lake, C. Narciso, K. Cowdrick, T. Storey, S. Zhang, J. Zartman, D. Hoelzle, Microfluidic device design, fabrication, and testing protocols. Protocol Exchange 10 (2015)
93.
Zurück zum Zitat K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef
94.
Zurück zum Zitat G. Paschew, J. Schreiter, A. Voigt, C. Pini, J.P. Chávez, M. Allerdißen, U. Marschner, S. Siegmund, R. Schüffny, F. Jülicher et al., Autonomous chemical oscillator circuit based on bidirectional chemical-microfluidic coupling. Adv. Mater. Technol. 1(1), 1600005 (2016)CrossRef G. Paschew, J. Schreiter, A. Voigt, C. Pini, J.P. Chávez, M. Allerdißen, U. Marschner, S. Siegmund, R. Schüffny, F. Jülicher et al., Autonomous chemical oscillator circuit based on bidirectional chemical-microfluidic coupling. Adv. Mater. Technol. 1(1), 1600005 (2016)CrossRef
123.
Zurück zum Zitat A. Waldbaur, B. Carneiro, P. Hettich, E. Wilhelm, B.E. Rapp, Computer-aided microfluidics (CAMF): from digital 3d-CAD models to physical structures within a day. Microfluid. Nanofluid. 15(5), 625–635 (2013)CrossRef A. Waldbaur, B. Carneiro, P. Hettich, E. Wilhelm, B.E. Rapp, Computer-aided microfluidics (CAMF): from digital 3d-CAD models to physical structures within a day. Microfluid. Nanofluid. 15(5), 625–635 (2013)CrossRef
Metadaten
Titel
Designing Meanders
verfasst von
Andreas Grimmer
Robert Wille
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-20713-7_5

Neuer Inhalt