Skip to main content
Erschienen in: BIT Numerical Mathematics 1/2020

04.07.2019

Direct and integrated radial functions based quasilinearization schemes for nonlinear fractional differential equations

verfasst von: G. Chandhini, K. S. Prashanthi, V. Antony Vijesh

Erschienen in: BIT Numerical Mathematics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, two radial basis functions based collocation schemes, differentiated and integrated methods (DRBF and IRBF), are extended to solve a class of nonlinear fractional initial and boundary value problems. Before discretization, the nonlinear problem is linearized using generalized quasilinearization. An interesting proof via generalized monotone quasilinearization for the existence and uniqueness for fractional order initial value problem is given. This convergence analysis also proves quadratic convergence of the generalized quasilinearization method. Both the schemes are compared in terms of accuracy and convergence and it is found that IRBF scheme handles inherent RBF ill-condition better than corresponding DRBF method. Variety of numerical examples are provided and compared with other available results to confirm the efficiency of the schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Antunes, P.R.S., Ferreira, R.A.C.: An augmented-RBF method for solving fractional Sturm–Liouville eigenvalue problems. SIAM J. Sci. Comput. 37(1), A515–A535 (2015)CrossRefMathSciNetMATH Antunes, P.R.S., Ferreira, R.A.C.: An augmented-RBF method for solving fractional Sturm–Liouville eigenvalue problems. SIAM J. Sci. Comput. 37(1), A515–A535 (2015)CrossRefMathSciNetMATH
2.
Zurück zum Zitat Antunes, P.R.S., Ferreira, R.A.C.: Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 48, 398–413 (2017)CrossRefMathSciNet Antunes, P.R.S., Ferreira, R.A.C.: Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 48, 398–413 (2017)CrossRefMathSciNet
4.
Zurück zum Zitat Bagley, R.L., Torvik, J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)CrossRefMATH Bagley, R.L., Torvik, J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)CrossRefMATH
5.
Zurück zum Zitat Chen, W., Fu, Z.J., Chen, C.S.: Recent Advances in Radial Basis Function Collocation Methods. Springer Briefs in Applied Sciences and Technology. Springer, Heidelberg (2014)CrossRef Chen, W., Fu, Z.J., Chen, C.S.: Recent Advances in Radial Basis Function Collocation Methods. Springer Briefs in Applied Sciences and Technology. Springer, Heidelberg (2014)CrossRef
6.
7.
Zurück zum Zitat Dehghan, M., Nikpour, A.: Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl. Math. Model. 37(18–19), 8578–8599 (2013)CrossRefMathSciNetMATH Dehghan, M., Nikpour, A.: Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl. Math. Model. 37(18–19), 8578–8599 (2013)CrossRefMathSciNetMATH
8.
Zurück zum Zitat Denton, Z., Ng, P., Vatsala, A.: Quasilinearization method via lower and upper solutions for Riemann–Liouville fractional differential equation. Nonlinear Dyn. Syst. Theory 11(3), 239–252 (2011)MathSciNetMATH Denton, Z., Ng, P., Vatsala, A.: Quasilinearization method via lower and upper solutions for Riemann–Liouville fractional differential equation. Nonlinear Dyn. Syst. Theory 11(3), 239–252 (2011)MathSciNetMATH
9.
Zurück zum Zitat Devi, J.V., McRae, F.A., Drici, Z.: Generalized quasilinearization for fractional differential equations. Comput. Math. Appl. 59, 1057–1062 (2010)CrossRefMathSciNetMATH Devi, J.V., McRae, F.A., Drici, Z.: Generalized quasilinearization for fractional differential equations. Comput. Math. Appl. 59, 1057–1062 (2010)CrossRefMathSciNetMATH
10.
Zurück zum Zitat Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)MathSciNetMATH Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)MathSciNetMATH
11.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations. CRC Press, Boca Raton (2010)CrossRefMATH Diethelm, K.: The Analysis of Fractional Differential Equations. CRC Press, Boca Raton (2010)CrossRefMATH
12.
Zurück zum Zitat Diethelm, K.: Increasing the efficiency of shooting methods for terminal value problems of fractional order. J. Comput. Phys. 293, 135–141 (2015)CrossRefMathSciNetMATH Diethelm, K.: Increasing the efficiency of shooting methods for terminal value problems of fractional order. J. Comput. Phys. 293, 135–141 (2015)CrossRefMathSciNetMATH
13.
Zurück zum Zitat Drábek, P., Milota, J.: Methods of nonlinear analysis. In: Applications to Differential Equations. Birkhäuser, Basel (2013) Drábek, P., Milota, J.: Methods of nonlinear analysis. In: Applications to Differential Equations. Birkhäuser, Basel (2013)
14.
Zurück zum Zitat Esmaeili, S., Shamsi, M., Dehghan, M.: Numerical solution of fractional differential equations via a Volterra integral equation approach. Cent. Eur. J. Phys. 11(10), 1470–1481 (2013) Esmaeili, S., Shamsi, M., Dehghan, M.: Numerical solution of fractional differential equations via a Volterra integral equation approach. Cent. Eur. J. Phys. 11(10), 1470–1481 (2013)
15.
Zurück zum Zitat Fakhr Kazemi, B., Ghoreishi, F.: Error estimate in fractional differential equations using multiquadratic radial basis functions. J. Comput. Appl. Math. 245, 133–147 (2013)CrossRefMathSciNetMATH Fakhr Kazemi, B., Ghoreishi, F.: Error estimate in fractional differential equations using multiquadratic radial basis functions. J. Comput. Appl. Math. 245, 133–147 (2013)CrossRefMathSciNetMATH
16.
Zurück zum Zitat Fasshauer, G.F.: Meshfree approximation methods with MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007) Fasshauer, G.F.: Meshfree approximation methods with MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)
17.
Zurück zum Zitat Firoozjaee, M., Yousefi, S., Jafari, H., Baleanu, D.: On a numerical approach to solve multi-order fractional differential equations with initial/boundary conditions. J. Comput. Nonlinear Dyn. 10(6), 061025(1-6) (2015) Firoozjaee, M., Yousefi, S., Jafari, H., Baleanu, D.: On a numerical approach to solve multi-order fractional differential equations with initial/boundary conditions. J. Comput. Nonlinear Dyn. 10(6), 061025(1-6) (2015)
18.
Zurück zum Zitat Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)MathSciNetMATH Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)MathSciNetMATH
19.
Zurück zum Zitat Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)CrossRefMathSciNet Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)CrossRefMathSciNet
20.
Zurück zum Zitat Ghehsareh, H.R., Heydari Bateni, S., Zaghian, A.: A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng. Anal. Bound. Elem. 61, 52–60 (2015)CrossRefMathSciNetMATH Ghehsareh, H.R., Heydari Bateni, S., Zaghian, A.: A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng. Anal. Bound. Elem. 61, 52–60 (2015)CrossRefMathSciNetMATH
21.
Zurück zum Zitat Hamarsheh, M., Ismail, A.M., et al.: Analytical approximation for fractional order logistic equation. Int. J. Pure Appl. Math. 115(2), 225–245 (2017)CrossRef Hamarsheh, M., Ismail, A.M., et al.: Analytical approximation for fractional order logistic equation. Int. J. Pure Appl. Math. 115(2), 225–245 (2017)CrossRef
22.
Zurück zum Zitat Huber, S.E., Trummer, M.R.: Radial basis functions for solving differential equations: ill-conditioned matrices and numerical stability. Comput. Math. Appl. 71(1), 319–327 (2016)CrossRefMathSciNet Huber, S.E., Trummer, M.R.: Radial basis functions for solving differential equations: ill-conditioned matrices and numerical stability. Comput. Math. Appl. 71(1), 319–327 (2016)CrossRefMathSciNet
23.
Zurück zum Zitat Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2149), 20120284 (2013)CrossRefMathSciNetMATH Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2149), 20120284 (2013)CrossRefMathSciNetMATH
24.
Zurück zum Zitat Jang, B.: Efficient analytic method for solving nonlinear fractional differential equations. Appl. Math. Model. 38(5), 1775–1787 (2014)CrossRefMathSciNetMATH Jang, B.: Efficient analytic method for solving nonlinear fractional differential equations. Appl. Math. Model. 38(5), 1775–1787 (2014)CrossRefMathSciNetMATH
25.
Zurück zum Zitat Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics—II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8), 147–161 (1990)CrossRefMathSciNetMATH Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics—II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8), 147–161 (1990)CrossRefMathSciNetMATH
26.
Zurück zum Zitat Kazem, S.: An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl. Math. Modell. 37(3), 1126–1136 (2013)CrossRefMathSciNetMATH Kazem, S.: An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl. Math. Modell. 37(3), 1126–1136 (2013)CrossRefMathSciNetMATH
27.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)CrossRefMATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)CrossRefMATH
28.
Zurück zum Zitat Lakshmikantham, V., Carl, S., Heikkilä, S.: Fixed point theorems in ordered Banach spaces via quasilinearization. Nonlinear Anal. 71(7–8), 3448–3458 (2009)CrossRefMathSciNetMATH Lakshmikantham, V., Carl, S., Heikkilä, S.: Fixed point theorems in ordered Banach spaces via quasilinearization. Nonlinear Anal. 71(7–8), 3448–3458 (2009)CrossRefMathSciNetMATH
29.
Zurück zum Zitat Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)CrossRefMathSciNetMATH Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)CrossRefMathSciNetMATH
31.
Zurück zum Zitat Magin, R., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(9–10), 1431–1442 (2008)CrossRefMATH Magin, R., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(9–10), 1431–1442 (2008)CrossRefMATH
32.
Zurück zum Zitat Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Methods Eng. 62(6), 824–852 (2005)CrossRefMathSciNetMATH Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Methods Eng. 62(6), 824–852 (2005)CrossRefMathSciNetMATH
33.
Zurück zum Zitat Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)CrossRefMATH Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)CrossRefMATH
35.
Zurück zum Zitat Pang, G., Chen, W., Fu, Z.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)CrossRefMathSciNetMATH Pang, G., Chen, W., Fu, Z.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)CrossRefMathSciNetMATH
36.
Zurück zum Zitat Parand, K., Abbasbandy, S., Kazem, S., Rad, J.: A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation. Commun. Nonlinear Sci. Numer. Simul. 16(3), 4250–4258 (2011)CrossRefMathSciNetMATH Parand, K., Abbasbandy, S., Kazem, S., Rad, J.: A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation. Commun. Nonlinear Sci. Numer. Simul. 16(3), 4250–4258 (2011)CrossRefMathSciNetMATH
37.
Zurück zum Zitat Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2013)CrossRefMathSciNetMATH Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2013)CrossRefMathSciNetMATH
38.
Zurück zum Zitat Qu, H., Liu, X.: A numerical method for solving fractional differential equations by using neural network. Adv. Math. Phys. pp. Art. ID 439526, 1–12 (2015) Qu, H., Liu, X.: A numerical method for solving fractional differential equations by using neural network. Adv. Math. Phys. pp. Art. ID 439526, 1–12 (2015)
39.
Zurück zum Zitat Saeed, U., ur Rehman, M.: Haar wavelet-quasilinearization technique for fractional nonlinear differential equations. Appl. Math. Comput. 220, 630–648 (2013) Saeed, U., ur Rehman, M.: Haar wavelet-quasilinearization technique for fractional nonlinear differential equations. Appl. Math. Comput. 220, 630–648 (2013)
40.
Zurück zum Zitat Schneider, W.: Completely monotone generalised Mittag-Leffler functions. Expos. Math. 14, 3–16 (1996)MATH Schneider, W.: Completely monotone generalised Mittag-Leffler functions. Expos. Math. 14, 3–16 (1996)MATH
41.
Zurück zum Zitat Sheng, H., Chen, Y., Qiu, T.: Fractional processes and fractional-order signal processing. In: Signals and Communication Technology. Springer, London (2012) Sheng, H., Chen, Y., Qiu, T.: Fractional processes and fractional-order signal processing. In: Signals and Communication Technology. Springer, London (2012)
42.
Zurück zum Zitat Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7–8), 941–954 (2003)CrossRefMATH Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7–8), 941–954 (2003)CrossRefMATH
43.
Zurück zum Zitat Tien, C.M.T., Mai-Duy, N., Tran, C.D., Tran-Cong, T.: A numerical study of compact approximations based on flat integrated radial basis functions for second-order differential equations. Comput. Math. Appl. 72(9), 2364–2387 (2016)CrossRefMathSciNetMATH Tien, C.M.T., Mai-Duy, N., Tran, C.D., Tran-Cong, T.: A numerical study of compact approximations based on flat integrated radial basis functions for second-order differential equations. Comput. Math. Appl. 72(9), 2364–2387 (2016)CrossRefMathSciNetMATH
44.
Zurück zum Zitat Vijesh, V.A., Kumar, K.: Wavelet based quasilinearization method for semi-linear parabolic initial boundary value problems. Appl. Math. Comput. 266, 1163–1176 (2015)MathSciNetMATH Vijesh, V.A., Kumar, K.: Wavelet based quasilinearization method for semi-linear parabolic initial boundary value problems. Appl. Math. Comput. 266, 1163–1176 (2015)MathSciNetMATH
46.
Zurück zum Zitat Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)CrossRefMathSciNetMATH Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)CrossRefMathSciNetMATH
Metadaten
Titel
Direct and integrated radial functions based quasilinearization schemes for nonlinear fractional differential equations
verfasst von
G. Chandhini
K. S. Prashanthi
V. Antony Vijesh
Publikationsdatum
04.07.2019
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 1/2020
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-019-00766-3

Weitere Artikel der Ausgabe 1/2020

BIT Numerical Mathematics 1/2020 Zur Ausgabe