Skip to main content
Erschienen in: Measurement Techniques 5/2018

19.09.2018 | FUNDAMENTAL PROBLEMS IN METROLOGY

Directions of Development of the Standards Base of Gravimetry

verfasst von: V. F. Fateev, A. N. Shchipunov

Erschienen in: Measurement Techniques | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern advances in the area related to the creation of gravimetry instruments are analyzed. Trends in the development and creation of standards of the unit of gravity acceleration, units of vertical and horizontal gravitational gradients, and unit of the plumb line deviation as well as the unit of gravitational potential are considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “Testing general relativity with atom interferometry,” Phys. Rev. Lett., 98, 111102 (2007), https://arXiv:gre-qc/0610047, acc. 12.07.2017. S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “Testing general relativity with atom interferometry,” Phys. Rev. Lett., 98, 111102 (2007), https://​arXiv:gre-qc/0610047, acc. 12.07.2017.
3.
Zurück zum Zitat T. C. Walker, M. Pachter, and R. E. Huffman, Jr., “Gravity gradiometer integrated inertial navigation,” Europ. Control Conf. (ECC), Zürich (2013). T. C. Walker, M. Pachter, and R. E. Huffman, Jr., “Gravity gradiometer integrated inertial navigation,” Europ. Control Conf. (ECC), Zürich (2013).
4.
Zurück zum Zitat L. F. Vitushkin and O. A. Orlov, “VNIIM-1 absolute ballistic gravimeter developed by Mendeleev VNIIM,” Girosk. Navig., No. 2, 95–101 (2014). L. F. Vitushkin and O. A. Orlov, “VNIIM-1 absolute ballistic gravimeter developed by Mendeleev VNIIM,” Girosk. Navig., No. 2, 95–101 (2014).
5.
Zurück zum Zitat G. O. Arnautov, E. N. Kalish, M. G. Smirnov, et al., Inventor’s Certificate SU 1563432 USSR, G 01 V 7/14, “Ballistic gravimeter,” Izobreteniya, No. 6 (2007). G. O. Arnautov, E. N. Kalish, M. G. Smirnov, et al., Inventor’s Certificate SU 1563432 USSR, G 01 V 7/14, “Ballistic gravimeter,” Izobreteniya, No. 6 (2007).
6.
Zurück zum Zitat P. F. Vitushkin, “Absolute ballistic gravimeters,” Girosk. Navig., No. 3 (90), 3–12 (2015). P. F. Vitushkin, “Absolute ballistic gravimeters,” Girosk. Navig., No. 3 (90), 3–12 (2015).
7.
Zurück zum Zitat Ch. J. Bordé, “Atomic clocks and inertial sensors,” Metrologia, 39, No. 35, 435–463 (2002).ADSCrossRef Ch. J. Bordé, “Atomic clocks and inertial sensors,” Metrologia, 39, No. 35, 435–463 (2002).ADSCrossRef
8.
Zurück zum Zitat S. Merlet, J. Le Gouet, Q. Bodart, et al., “Operating an atom interferometer beyond its linear range,” Metrologia, 46, No. 1, 87–94 (2009).ADSCrossRef S. Merlet, J. Le Gouet, Q. Bodart, et al., “Operating an atom interferometer beyond its linear range,” Metrologia, 46, No. 1, 87–94 (2009).ADSCrossRef
9.
Zurück zum Zitat Z. Jiang, V. Palinkas, F. E. Arias, and J. Liard, “The 8th International Comparison of Absolute Gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry,” Metrologia, 49, No. 6, 666–684 (2012).ADSCrossRef Z. Jiang, V. Palinkas, F. E. Arias, and J. Liard, “The 8th International Comparison of Absolute Gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry,” Metrologia, 49, No. 6, 666–684 (2012).ADSCrossRef
10.
Zurück zum Zitat R. J. Warburton, H. Pillai, and R. C. Reinman, “Initial results with the new GWR iGravTM superconducting gravity meter,” Proc. Symp. of International Association of Geodesy (IAG) on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2010) (2010). R. J. Warburton, H. Pillai, and R. C. Reinman, “Initial results with the new GWR iGravTM superconducting gravity meter,” Proc. Symp. of International Association of Geodesy (IAG) on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2010) (2010).
11.
Zurück zum Zitat V. G. Peshekhonov, O. A. Stepanov (eds.), L. I. Avgustov, et al., Modern Methods and Means of Measuring the Parameters of the Earth’s Gravitational Field, Concern TsNII Elektropribor, St. Petersburg (2010). V. G. Peshekhonov, O. A. Stepanov (eds.), L. I. Avgustov, et al., Modern Methods and Means of Measuring the Parameters of the Earth’s Gravitational Field, Concern TsNII Elektropribor, St. Petersburg (2010).
12.
Zurück zum Zitat K. Kalicioglu, R. Deniz, and H. Ozener, “Determining astrogeodetic deviations of the vertical using digital zenith camera system,” in: 26th IUGG General Assembly, Prague (2015). K. Kalicioglu, R. Deniz, and H. Ozener, “Determining astrogeodetic deviations of the vertical using digital zenith camera system,” in: 26th IUGG General Assembly, Prague (2015).
13.
Zurück zum Zitat A. Somieski, Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece: Dissert. Subm. to ETH Zurich for the Degree of Doctor of Sciences (2008). A. Somieski, Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece: Dissert. Subm. to ETH Zurich for the Degree of Doctor of Sciences (2008).
14.
Zurück zum Zitat S. V. Gayvoronskii, N. V. Kuz’mina, and V. V. Tsodokova, “Computed-aided zenith telescope for the solution of astro-geodetic problems,” in: Navigation in the Earth’s Gravitational Field and its Metrological Assurance: Abstracts (2017), pp. 75–77. S. V. Gayvoronskii, N. V. Kuz’mina, and V. V. Tsodokova, “Computed-aided zenith telescope for the solution of astro-geodetic problems,” in: Navigation in the Earth’s Gravitational Field and its Metrological Assurance: Abstracts (2017), pp. 75–77.
15.
Zurück zum Zitat M. M. Murzabekov and V. F. Fateev, “A complex of instruments of metrological assurance for astronomical meters of the inhomogeneity of the Earth’s gravitational field,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 210–214. M. M. Murzabekov and V. F. Fateev, “A complex of instruments of metrological assurance for astronomical meters of the inhomogeneity of the Earth’s gravitational field,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 210–214.
16.
Zurück zum Zitat L. D. Landau and Ye. M. Lifshits, Field Theory, Nauka, Moscow (1967). L. D. Landau and Ye. M. Lifshits, Field Theory, Nauka, Moscow (1967).
17.
Zurück zum Zitat V. F. Fateev, Relativistic Metrology of Near-Earth Space-Time: Monograph, VNIIFTRI, Mendeleevo (2017). V. F. Fateev, Relativistic Metrology of Near-Earth Space-Time: Monograph, VNIIFTRI, Mendeleevo (2017).
19.
Zurück zum Zitat V. F. Fateev, V. P. Sysoev, and E. A. Rybakov, “Experimental measurement of the gravitational effect of time slowdown by means of transportable quantum clocks,” Izmer. Tekhn., No. 4, 41–43 (2016). V. F. Fateev, V. P. Sysoev, and E. A. Rybakov, “Experimental measurement of the gravitational effect of time slowdown by means of transportable quantum clocks,” Izmer. Tekhn., No. 4, 41–43 (2016).
20.
Zurück zum Zitat S. S. Donchenko, O. V. Kolmogorov, D. V. Prokhorov, “Results of experimental studies of a system of one- and twosided comparisons of time scales,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 228–230. S. S. Donchenko, O. V. Kolmogorov, D. V. Prokhorov, “Results of experimental studies of a system of one- and twosided comparisons of time scales,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 228–230.
22.
Zurück zum Zitat V. F. Fateev, E. A. Rybakov, and F. R. Smirnov, “The method of relativistic synchronization of transportable atomic clocks and its experimental verification,” Pisma Zh. Tekh. Fiz., 43, Iss. 10, 3–11 (2017). V. F. Fateev, E. A. Rybakov, and F. R. Smirnov, “The method of relativistic synchronization of transportable atomic clocks and its experimental verification,” Pisma Zh. Tekh. Fiz., 43, Iss. 10, 3–11 (2017).
23.
Zurück zum Zitat O. I. Berdasov, K. Yu. Khabarova, S. A. Strelkin, et al., “Optical frequency standards on cold strontium atoms,” Alman. Sovr. Metrol., No. 1, 13–36 (2014). O. I. Berdasov, K. Yu. Khabarova, S. A. Strelkin, et al., “Optical frequency standards on cold strontium atoms,” Alman. Sovr. Metrol., No. 1, 13–36 (2014).
24.
Zurück zum Zitat S. V. Chepurov, A. A. Lugovoi, S. N. Kuznetsov, et al., “Optical frequency standard based on a single ytterbium atom,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 241–242. S. V. Chepurov, A. A. Lugovoi, S. N. Kuznetsov, et al., “Optical frequency standard based on a single ytterbium atom,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 241–242.
Metadaten
Titel
Directions of Development of the Standards Base of Gravimetry
verfasst von
V. F. Fateev
A. N. Shchipunov
Publikationsdatum
19.09.2018
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 5/2018
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1446-x

Weitere Artikel der Ausgabe 5/2018

Measurement Techniques 5/2018 Zur Ausgabe