Skip to main content

2021 | OriginalPaper | Buchkapitel

18. District Household Electricity Consumption Pattern Analysis Based on Auto-Encoder Algorithm

verfasst von : Yuan Jin, Da Yan, Xingxing Zhang, Mengjie Han, Xuyuan Kang, Jingjing An, Hongsan Sun

Erschienen in: Data-driven Analytics for Sustainable Buildings and Cities

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The energy shortage is one key issue for sustainable development, a potential solution of which is the integration with the renewable energy resources. However, the temporal sequential characteristic of renewable resources is different from traditional power grid. For the entire power grid, it is essential to match the energy generation side with the energy consumption side, so the load characteristic at the energy use side is crucial for renewable power integration. Better understanding of energy consumption pattern in buildings contributes to matching different source of energy generation. Under the background of integration of traditional and renewable energy, this research focuses on analysis of different household electricity consumption patterns in an urban scale. The original data is from measurement of daily energy consumption with smart meter in households. To avoid the dimension explosion phenomenon, the auto-encoder algorithm is introduced during the clustering analysis of daily electricity use data, which plays the role of principal component analysis. The clustering based on auto-encoder gives a clear insight into the urban electricity use patterns in household. During the data analysis, several feature variables are proposed, which include peak value, valley value and average value. The distinction analysis is also conducted to evaluate the analysis performance. The chapter takes households in Nanjing city, China as a case study, to conduct the clustering analysis on electricity consumption of residential buildings. The analysis results can be further applied, such as during the capacity design of district energy storage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beccali M et al (2004) Forecasting daily urban electric load profiles using artificial neural networks. Energy Convers Manage 45(18–19):2879–2900CrossRef Beccali M et al (2004) Forecasting daily urban electric load profiles using artificial neural networks. Energy Convers Manage 45(18–19):2879–2900CrossRef
Zurück zum Zitat Bernhardson CS (1975) 375: Type I error rates when multiple comparison procedures follow a significant F test of ANOVA. Biometrics 31(1):229–232CrossRef Bernhardson CS (1975) 375: Type I error rates when multiple comparison procedures follow a significant F test of ANOVA. Biometrics 31(1):229–232CrossRef
Zurück zum Zitat Breunig MM et al (2000) LOF: identifying density-based local outliers. In: ACM sigmod record. ACM Breunig MM et al (2000) LOF: identifying density-based local outliers. In: ACM sigmod record. ACM
Zurück zum Zitat Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27CrossRef Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27CrossRef
Zurück zum Zitat Eichinger F et al (2015) A time-series compression technique and its application to the smart grid. VLDB J—Int J Very Large Data Bases 24(2):193–218 Eichinger F et al (2015) A time-series compression technique and its application to the smart grid. VLDB J—Int J Very Large Data Bases 24(2):193–218
Zurück zum Zitat Godina R et al (2018) Model predictive control home energy management and optimization strategy with demand response. Appl Sci-Basel 8(3):19 Godina R et al (2018) Model predictive control home energy management and optimization strategy with demand response. Appl Sci-Basel 8(3):19
Zurück zum Zitat Granell R, Axon CJ, Wallom DCH (2015) Clustering disaggregated load profiles using a Dirichlet process mixture model. Energy Convers Manage 92:507–516CrossRef Granell R, Axon CJ, Wallom DCH (2015) Clustering disaggregated load profiles using a Dirichlet process mixture model. Energy Convers Manage 92:507–516CrossRef
Zurück zum Zitat Harter HL (1960) Critical values for Duncan’s new multiple range test. In: Aerospace Research Labs Wright-Patterson AFB OH Harter HL (1960) Critical values for Duncan’s new multiple range test. In: Aerospace Research Labs Wright-Patterson AFB OH
Zurück zum Zitat Hartigan JA, Wong MA (1979) Algorithm AS 136: A K-means clustering algorithm. J R Stat Soc Ser C (Appl Stat) 28(1):100–108 Hartigan JA, Wong MA (1979) Algorithm AS 136: A K-means clustering algorithm. J R Stat Soc Ser C (Appl Stat) 28(1):100–108
Zurück zum Zitat Khan J et al (2014) PMU data analysis in smart grid using WPD. In: IECON 2014–40th annual conference of the IEEE Industrial Electronics Society. IEEE, New York Khan J et al (2014) PMU data analysis in smart grid using WPD. In: IECON 2014–40th annual conference of the IEEE Industrial Electronics Society. IEEE, New York
Zurück zum Zitat Kingma D, Ba L (2015) Adam: a method for stochastic optimization Kingma D, Ba L (2015) Adam: a method for stochastic optimization
Zurück zum Zitat Kong WC et al (2018) An extensible approach for non-intrusive load disaggregation with smart meter data. IEEE Trans Smart Grid 9(4):3362–3372CrossRef Kong WC et al (2018) An extensible approach for non-intrusive load disaggregation with smart meter data. IEEE Trans Smart Grid 9(4):3362–3372CrossRef
Zurück zum Zitat Li C et al (2017) Building energy consumption prediction: An extreme deep learning approach. Energies 10(10):1525CrossRef Li C et al (2017) Building energy consumption prediction: An extreme deep learning approach. Energies 10(10):1525CrossRef
Zurück zum Zitat Liu H et al (2017) Efficient outlier detection for high-dimensional data. IEEE Trans Syst Man Cybern: Syst 99:1–11 Liu H et al (2017) Efficient outlier detection for high-dimensional data. IEEE Trans Syst Man Cybern: Syst 99:1–11
Zurück zum Zitat Li XL, Bowers CP, Schnier T (2010) Classification of energy consumption in buildings with outlier detection. IEEE Trans Industr Electron 57(11):3639–3644CrossRef Li XL, Bowers CP, Schnier T (2010) Classification of energy consumption in buildings with outlier detection. IEEE Trans Industr Electron 57(11):3639–3644CrossRef
Zurück zum Zitat Nan SB, Zhou M, Li GY (2018) Optimal residential community demand response scheduling in smart grid. Appl Energy 210:1280–1289CrossRef Nan SB, Zhou M, Li GY (2018) Optimal residential community demand response scheduling in smart grid. Appl Energy 210:1280–1289CrossRef
Zurück zum Zitat Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Zurück zum Zitat Ponocko J, Milanovic JV (2017) Application of data analytics for advanced demand profiling of residential load using smart meter data. In: 2017 IEEE Manchester Powertech Ponocko J, Milanovic JV (2017) Application of data analytics for advanced demand profiling of residential load using smart meter data. In: 2017 IEEE Manchester Powertech
Zurück zum Zitat Qi Y et al (2017) Load pattern recognition method based on fuzzy clustering and decision tree. In: 2017 IEEE conference on energy internet and energy system integration (EI2). IEEE, New York Qi Y et al (2017) Load pattern recognition method based on fuzzy clustering and decision tree. In: 2017 IEEE conference on energy internet and energy system integration (EI2). IEEE, New York
Zurück zum Zitat Rummelhart DE (1986) Learning internal representations by error propagation. Parallel Distrib Process: I. Found 318–362 Rummelhart DE (1986) Learning internal representations by error propagation. Parallel Distrib Process: I. Found 318–362
Zurück zum Zitat Ryu S et al (2016) Customer load pattern analysis using clustering techniques. KEPCO J Electr Power Energy 2(1):61–69CrossRef Ryu S et al (2016) Customer load pattern analysis using clustering techniques. KEPCO J Electr Power Energy 2(1):61–69CrossRef
Zurück zum Zitat Setlhaolo D, Xia XH, Zhang JF (2014) Optimal scheduling of household appliances for demand response. Electr Power Syst Res 116:24–28CrossRef Setlhaolo D, Xia XH, Zhang JF (2014) Optimal scheduling of household appliances for demand response. Electr Power Syst Res 116:24–28CrossRef
Zurück zum Zitat Stoll H (1989) Least-cost electric utility planning. Wiley, New York Stoll H (1989) Least-cost electric utility planning. Wiley, New York
Zurück zum Zitat Teeraratkul T, O’Neill D, Lall S (2018) Shape-based approach to household electric load curve clustering and prediction. IEEE Trans Smart Grid 9(5):5196–5206CrossRef Teeraratkul T, O’Neill D, Lall S (2018) Shape-based approach to household electric load curve clustering and prediction. IEEE Trans Smart Grid 9(5):5196–5206CrossRef
Zurück zum Zitat Torriti J (2014) A review of time use models of residential electricity demand. Renew Sustain Energy Rev 37:265–272CrossRef Torriti J (2014) A review of time use models of residential electricity demand. Renew Sustain Energy Rev 37:265–272CrossRef
Zurück zum Zitat Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. J Appl Meteorol 40(8):1413–1421CrossRef Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. J Appl Meteorol 40(8):1413–1421CrossRef
Zurück zum Zitat Vázquez-Canteli JR, Nagy Z (2019) Reinforcement learning for demand response: a review of algorithms and modeling techniques. Appl Energy 235:1072–1089CrossRef Vázquez-Canteli JR, Nagy Z (2019) Reinforcement learning for demand response: a review of algorithms and modeling techniques. Appl Energy 235:1072–1089CrossRef
Zurück zum Zitat Wen LL, Zhou KL, Yang SL (2019) A shape-based clustering method for pattern recognition of residential electricity consumption. J Clean Prod 212:475–488CrossRef Wen LL, Zhou KL, Yang SL (2019) A shape-based clustering method for pattern recognition of residential electricity consumption. J Clean Prod 212:475–488CrossRef
Zurück zum Zitat Zhou K, Yang S, Shao Z (2017) Household monthly electricity consumption pattern mining: a fuzzy clustering-based model and a case study. J Clean Prod 141:900–908CrossRef Zhou K, Yang S, Shao Z (2017) Household monthly electricity consumption pattern mining: a fuzzy clustering-based model and a case study. J Clean Prod 141:900–908CrossRef
Metadaten
Titel
District Household Electricity Consumption Pattern Analysis Based on Auto-Encoder Algorithm
verfasst von
Yuan Jin
Da Yan
Xingxing Zhang
Mengjie Han
Xuyuan Kang
Jingjing An
Hongsan Sun
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2778-1_18