Skip to main content

2019 | OriginalPaper | Buchkapitel

Diversity Regularized Adversarial Deep Learning

verfasst von : Babajide O. Ayinde, Keishin Nishihama, Jacek M. Zurada

Erschienen in: Artificial Intelligence Applications and Innovations

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The two key players in Generative Adversarial Networks (GANs), the discriminator and generator, are usually parameterized as deep neural networks (DNNs). On many generative tasks, GANs achieve state-of-the-art performance but are often unstable to train and sometimes miss modes. A typical failure mode is the collapse of the generator to a single parameter configuration where its outputs are identical. When this collapse occurs, the gradient of the discriminator may point in similar directions for many similar points. We hypothesize that some of these shortcomings are in part due to primitive and redundant features extracted by discriminator and this can easily make the training stuck. We present a novel approach for regularizing adversarial models by enforcing diverse feature learning. In order to do this, both generator and discriminator are regularized by penalizing both negatively and positively correlated features according to their differentiation and based on their relative cosine distances. In addition to the gradient information from the adversarial loss made available by the discriminator, diversity regularization also ensures that a more stable gradient is provided to update both the generator and discriminator. Results indicate our regularizer enforces diverse features, stabilizes training, and improves image synthesis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
2.
Zurück zum Zitat Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016) Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)
4.
Zurück zum Zitat Ayinde, B.O., Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 3969–3979 (2018)CrossRef Ayinde, B.O., Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 3969–3979 (2018)CrossRef
5.
Zurück zum Zitat Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
6.
Zurück zum Zitat Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015) Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:​1511.​06434 (2015)
7.
Zurück zum Zitat Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016) Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
8.
Zurück zum Zitat Kurach, K., Lucic, M., Zhai, X., Michalski, M., Gelly, S.: The GAN landscape: losses, architectures, regularization, and normalization (2018) Kurach, K., Lucic, M., Zhai, X., Michalski, M., Gelly, S.: The GAN landscape: losses, architectures, regularization, and normalization (2018)
9.
Zurück zum Zitat Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016) Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016)
10.
Zurück zum Zitat Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
11.
Zurück zum Zitat Mao, X., Li, X., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017) Mao, X., Li, X., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017)
12.
Zurück zum Zitat Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017) Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:​1701.​04862 (2017)
14.
Zurück zum Zitat Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE (2017) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE (2017)
15.
Zurück zum Zitat Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. IEEE (2017) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. IEEE (2017)
16.
Zurück zum Zitat Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: 33rd International Conference on Machine Learning, pp. 1060–1069 (2016) Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: 33rd International Conference on Machine Learning, pp. 1060–1069 (2016)
17.
Zurück zum Zitat Ledig C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114. IEEE (2017) Ledig C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114. IEEE (2017)
18.
Zurück zum Zitat Azadi, S., Fisher, M., Kim, V., Wang, Z., Shechtman, E., Darrell, T.: Multi-content GAN for few-shot font style transfer (2018) Azadi, S., Fisher, M., Kim, V., Wang, Z., Shechtman, E., Darrell, T.: Multi-content GAN for few-shot font style transfer (2018)
19.
20.
Zurück zum Zitat Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. In: ICLR (2017) Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. In: ICLR (2017)
21.
Zurück zum Zitat Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017) Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
22.
Zurück zum Zitat Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems, pp. 2018–2028 (2017) Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems, pp. 2018–2028 (2017)
23.
Zurück zum Zitat Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial networks. In: ICLR (2017) Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial networks. In: ICLR (2017)
24.
Zurück zum Zitat Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:​1502.​03167 (2015)
26.
Zurück zum Zitat Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015) Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)
27.
Zurück zum Zitat Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018) Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)
28.
Zurück zum Zitat Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks. arXiv preprint arXiv:1609.07093 (2016) Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks. arXiv preprint arXiv:​1609.​07093 (2016)
29.
Zurück zum Zitat Liu, C., Zhang, Z., Wang, D.: Pruning deep neural networks by optimal brain damage. In: Fifteenth Annual Conference of the International Speech Communication Association (2014) Liu, C., Zhang, Z., Wang, D.: Pruning deep neural networks by optimal brain damage. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)
30.
Zurück zum Zitat Xie, P., Deng, Y., Xing, E.: On the generalization error bounds of neural networks under diversity-inducing mutual angular regularization. arXiv preprint arXiv:1511.07110 (2015) Xie, P., Deng, Y., Xing, E.: On the generalization error bounds of neural networks under diversity-inducing mutual angular regularization. arXiv preprint arXiv:​1511.​07110 (2015)
31.
Zurück zum Zitat Rodríguez, P., Gonzàlez, J., Cucurull, G., Gonfaus, J.M., Roca, X.: Regularizing CNNs with locally constrained decorrelations. arXiv preprint arXiv:1611.01967 (2017) Rodríguez, P., Gonzàlez, J., Cucurull, G., Gonfaus, J.M., Roca, X.: Regularizing CNNs with locally constrained decorrelations. arXiv preprint arXiv:​1611.​01967 (2017)
32.
33.
34.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
36.
Zurück zum Zitat Ayinde, B.O., Zurada, J.M.: Clustering of receptive fields in autoencoders. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1310–1317. IEEE (2016) Ayinde, B.O., Zurada, J.M.: Clustering of receptive fields in autoencoders. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1310–1317. IEEE (2016)
37.
Zurück zum Zitat Ayinde, B.O., Inanc, T., Zurada, J.M.: Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans. Neural Netw. Learn. Syst., 1–12 (2019) Ayinde, B.O., Inanc, T., Zurada, J.M.: Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans. Neural Netw. Learn. Syst., 1–12 (2019)
38.
Zurück zum Zitat Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In: ICLR (2014) Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In: ICLR (2014)
39.
Zurück zum Zitat Ayinde, B.O., Zurada, J.M.: Nonredundant sparse feature extraction using autoencoders with receptive fields clustering. Neural Netw. 93, 99–109 (2017)CrossRef Ayinde, B.O., Zurada, J.M.: Nonredundant sparse feature extraction using autoencoders with receptive fields clustering. Neural Netw. 93, 99–109 (2017)CrossRef
40.
Zurück zum Zitat Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009) Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)
42.
Zurück zum Zitat Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011) Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)
43.
Zurück zum Zitat Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015) Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)
45.
Zurück zum Zitat Vallender, S.: Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. 18(4), 784–786 (1974)CrossRef Vallender, S.: Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. 18(4), 784–786 (1974)CrossRef
46.
Zurück zum Zitat Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 901–909 (2016) Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 901–909 (2016)
Metadaten
Titel
Diversity Regularized Adversarial Deep Learning
verfasst von
Babajide O. Ayinde
Keishin Nishihama
Jacek M. Zurada
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19823-7_24