Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Dynamic Modelling and Co-simulation Between MATLAB–Simulink and DIgSILENT PowerFactory of Electric Railway Traction Systems

verfasst von : Luis Chiza, Jaime Cepeda, Jonathan Riofrio, Santiago Chamba, Marcelo Pozo

Erschienen in: Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The inclusion of electric transportation systems generates more complex interactions among multiple grid components. The action of these elements actively affects the state of power distribution grids and their complexity for operation analyses, which requires proper studies in order to avoid potentially bad situations. A feasible answer to this constraint can be the usage of digital co-simulation that is a well-developed technique for the performance assessment of power systems. Therefore, this chapter presents a co-simulation tool for assessing the impact of electric railway traction systems into the grid. The co-simulation tool is applied to mass electric mobility interacting with an electric power system by means of OLE for process control (OPC), which allows controlling and supervising the communication between DIgSILENT PowerFactory and MATLAB–Simulink. DIgSILENT PowerFactory is used for railway and utility power systems simulation; meanwhile, MATLAB–Simulink simulates electrical drives as well as control and operation of asynchronous machines (i.e. the power electronic converters). The combination of both computer programs through OPC Simulation Server sets a powerful platform up to test complex control systems applied in traction systems of electric trains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat G. De Filippo, V. Marano, R. Sioshansi, Simulation of an electric transportation system at The Ohio State University. Appl. Energy 113, 1686–1691 (2014)CrossRef G. De Filippo, V. Marano, R. Sioshansi, Simulation of an electric transportation system at The Ohio State University. Appl. Energy 113, 1686–1691 (2014)CrossRef
2.
Zurück zum Zitat S. Habib, M. Kamran, U. Rashid, Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks—A review. J. Power Sources 277, 205–214 (2015)CrossRef S. Habib, M. Kamran, U. Rashid, Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks—A review. J. Power Sources 277, 205–214 (2015)CrossRef
3.
Zurück zum Zitat B. Barnard, Railway System Modelling—Not Just for Fun Keynote Address. IEEE Semin. Railw. Syst. Model. Just Fun, 2–6 (2004) B. Barnard, Railway System Modelling—Not Just for Fun Keynote Address. IEEE Semin. Railw. Syst. Model. Just Fun, 2–6 (2004)
4.
Zurück zum Zitat G. Celentano, R. Iervolino, Global modelling and simulation for analysis and design of a railway vehicle. SPEEDAM 2012—21st Int. Symp. Power Electron. Electr. Drives, Autom. Motion, 1490–1495 (2012) G. Celentano, R. Iervolino, Global modelling and simulation for analysis and design of a railway vehicle. SPEEDAM 2012—21st Int. Symp. Power Electron. Electr. Drives, Autom. Motion, 1490–1495 (2012)
5.
Zurück zum Zitat A. Riofrio, M. Chamba, J. Cepeda, Y. Lecaro, F. Chimarro, M. Mora, Probabilistic assessment and risk management of grid loadability due to the Quito City subway commissioning considering Electric Trains Stochastic Movement. Rev. Técnica “energía 15(II), 1–12 (2019) A. Riofrio, M. Chamba, J. Cepeda, Y. Lecaro, F. Chimarro, M. Mora, Probabilistic assessment and risk management of grid loadability due to the Quito City subway commissioning considering Electric Trains Stochastic Movement. Rev. Técnica “energía 15(II), 1–12 (2019)
6.
Zurück zum Zitat R. Goodall, Control engineering challenges for railway trains of the future. IET Seminar Digest 4, 1–10 (2010) R. Goodall, Control engineering challenges for railway trains of the future. IET Seminar Digest 4, 1–10 (2010)
7.
Zurück zum Zitat S. Bruni, R. Goodall, T.X. Mei, H. Tsunashima, Control and monitoring for railway vehicle dynamics. Vehicle Syste. Dyn. 45(7–8), 743–779 (2007)CrossRef S. Bruni, R. Goodall, T.X. Mei, H. Tsunashima, Control and monitoring for railway vehicle dynamics. Vehicle Syste. Dyn. 45(7–8), 743–779 (2007)CrossRef
8.
Zurück zum Zitat Y. Li, F. Ma, M. Kazerani, Research on the control strategy for the traction motor on the test bench of vehicular energy storage system. Proceeding of the CSEE 34(21), 3481–3487 (2014) Y. Li, F. Ma, M. Kazerani, Research on the control strategy for the traction motor on the test bench of vehicular energy storage system. Proceeding of the CSEE 34(21), 3481–3487 (2014)
9.
Zurück zum Zitat R. J. Hill, J. Lamacq, Railway traction vehicle electromechanical simulation using SIMULINK. Trans Built Environ 18 (1996) R. J. Hill, J. Lamacq, Railway traction vehicle electromechanical simulation using SIMULINK. Trans Built Environ 18 (1996)
10.
Zurück zum Zitat M. Quraan, J. Siam, Modelling and simulation of railway electric traction with vector control drive. 2016 IEEE Int. Conf. Intell. Rail Transp. ICIRT 2016(1), 105–110 (2016) M. Quraan, J. Siam, Modelling and simulation of railway electric traction with vector control drive. 2016 IEEE Int. Conf. Intell. Rail Transp. ICIRT 2016(1), 105–110 (2016)
11.
Zurück zum Zitat M. Chen, T. Wen, W. Jiang, J. Luo, Modelling and Simulation of New Traction Power Supply System in Electrified Railway, IEEE Conf. (Intell. Transp. Syst. Proceedings, ITSC, 2015), pp. 1345–1350 M. Chen, T. Wen, W. Jiang, J. Luo, Modelling and Simulation of New Traction Power Supply System in Electrified Railway, IEEE Conf. (Intell. Transp. Syst. Proceedings, ITSC, 2015), pp. 1345–1350
12.
Zurück zum Zitat A. Župan, A.T. Teklić, B. Filipović-Grčić, Modelling of 25 kV electric railway system for power quality studies. IEEE EuroCon 2013, 844–849 (2013) A. Župan, A.T. Teklić, B. Filipović-Grčić, Modelling of 25 kV electric railway system for power quality studies. IEEE EuroCon 2013, 844–849 (2013)
13.
Zurück zum Zitat W. Mingli, C. Roberts, and S. Hillmansen, Modelling of AC feeding systems of electric railways based on a uniform multi-conductor chain circuit topology. IET Conf. Railw. Tract. Syst. (RTS 2010), 2010(13342), 12–12 (2010) W. Mingli, C. Roberts, and S. Hillmansen, Modelling of AC feeding systems of electric railways based on a uniform multi-conductor chain circuit topology. IET Conf. Railw. Tract. Syst. (RTS 2010), 2010(13342), 12–12 (2010)
14.
Zurück zum Zitat R. Huang, R. Fan, J. Daily, A. Fisher, J. Fuller, Open-source framework for power system transmission and distribution dynamics co-simulation. Transmission Distribution IET Generation 11(12), 3152–3162 (2017)CrossRef R. Huang, R. Fan, J. Daily, A. Fisher, J. Fuller, Open-source framework for power system transmission and distribution dynamics co-simulation. Transmission Distribution IET Generation 11(12), 3152–3162 (2017)CrossRef
15.
Zurück zum Zitat C. D. López, A. A. v. d. Meer, M. Cvetković, P. Palensky, A variable-rate co-simulation environment for the dynamic analysis of multi-area power systems, in 2017 IEEE Manchester PowerTech, pp. 1–6 (2017) C. D. López, A. A. v. d. Meer, M. Cvetković, P. Palensky, A variable-rate co-simulation environment for the dynamic analysis of multi-area power systems, in 2017 IEEE Manchester PowerTech, pp. 1–6 (2017)
16.
Zurück zum Zitat M. Cvetković, H. Krishnappa, C. D. López, R. Bhandia, J. Rueda Torres, P. Palensky, Co-simulation and dynamic model exchange with consideration for wind projects, in 16th Wind Integration Workshop, September 2017 M. Cvetković, H. Krishnappa, C. D. López, R. Bhandia, J. Rueda Torres, P. Palensky, Co-simulation and dynamic model exchange with consideration for wind projects, in 16th Wind Integration Workshop, September 2017
17.
Zurück zum Zitat F. Andrén, M. Stifter, T. Strasser, An environment for the coordinated simulation of power grids together with automation systems, in 2013 IEEE Grenoble Conference, Grenoble, pp. 1–6 (2013) F. Andrén, M. Stifter, T. Strasser, An environment for the coordinated simulation of power grids together with automation systems, in 2013 IEEE Grenoble Conference, Grenoble, pp. 1–6 (2013)
18.
Zurück zum Zitat J. Garcia-Villalobos, I. Zamora, M. Marinelli, P. Eguia, J. I. San Martin, Co-simulation with DIgSILENT PowerFactory and MATLAB: Optimal integration of plug-in electric vehicles in distribution networks, Advanced Smart Grid Functionalities based on Power Factory (Green Energy and Technology), Springer (2017) J. Garcia-Villalobos, I. Zamora, M. Marinelli, P. Eguia, J. I. San Martin, Co-simulation with DIgSILENT PowerFactory and MATLAB: Optimal integration of plug-in electric vehicles in distribution networks, Advanced Smart Grid Functionalities based on Power Factory (Green Energy and Technology), Springer (2017)
19.
Zurück zum Zitat A. Latif, M. Shahzad, P. Palensky, Y. W. Gawlik, An alternate PowerFactory MATLAB coupling approach, Vienna: International Symposium on Smart Electric Distribution Systems and Technologies (EDST), IEEE (2015) A. Latif, M. Shahzad, P. Palensky, Y. W. Gawlik, An alternate PowerFactory MATLAB coupling approach, Vienna: International Symposium on Smart Electric Distribution Systems and Technologies (EDST), IEEE (2015)
20.
Zurück zum Zitat F. Gonzalez-Longatt, J. Rueda, Introduction to Smart Grid Functionalities, in Advanced Smart Grid Functionalities Based on PowerFactory, Green Energy and Technology, Springer (2018) F. Gonzalez-Longatt, J. Rueda, Introduction to Smart Grid Functionalities, in Advanced Smart Grid Functionalities Based on PowerFactory, Green Energy and Technology, Springer (2018)
21.
Zurück zum Zitat Stifter, F. Andrén, R. Schwalbe, W. Tremmel, Interfacing PowerFactory: Co-simulation, Real-Time Simulation and Controller Hardware-in-the-Loop Applications, in PowerFactory Applications for Power System Analysis, Gewerbestrasse, Cham, Switzerland: Springer International Publishing (2014) Stifter, F. Andrén, R. Schwalbe, W. Tremmel, Interfacing PowerFactory: Co-simulation, Real-Time Simulation and Controller Hardware-in-the-Loop Applications, in PowerFactory Applications for Power System Analysis, Gewerbestrasse, Cham, Switzerland: Springer International Publishing (2014)
22.
Zurück zum Zitat MatrikonOPC, MatrikonOPC Explorer. User's Manual, Matrikon International, Edmonton, Canadá, pp. 1–79 (2018) MatrikonOPC, MatrikonOPC Explorer. User's Manual, Matrikon International, Edmonton, Canadá, pp. 1–79 (2018)
24.
Zurück zum Zitat A. Riofrio, M. Chamba, J. Cepeda, Y. Lecaro, F. Chimarro, Y. M. Mora, Probabilistic Assessment of Underground Railway Systems Impact Over Distribution Grids, Innovative Smart Grid Technologies (ISGT), IEEE (2019) A. Riofrio, M. Chamba, J. Cepeda, Y. Lecaro, F. Chimarro, Y. M. Mora, Probabilistic Assessment of Underground Railway Systems Impact Over Distribution Grids, Innovative Smart Grid Technologies (ISGT), IEEE (2019)
25.
Zurück zum Zitat Toshiba, DC-AC Inverter Circuit, TOSHIBA Electronic Devices & Storage Corporation, pp. 1–29 (2018) Toshiba, DC-AC Inverter Circuit, TOSHIBA Electronic Devices & Storage Corporation, pp. 1–29 (2018)
26.
Zurück zum Zitat B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall (2002) B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall (2002)
27.
Zurück zum Zitat T. Banerjee, J. Bera, S. Chowdhuri, and G. Sarkar, A comparative study between different modulations techniques used in Field Oriented Control Induction Motor Drive. 2nd Int. Conf. Control. Instrumentation Energy Commun. 358–362 (2016) T. Banerjee, J. Bera, S. Chowdhuri, and G. Sarkar, A comparative study between different modulations techniques used in Field Oriented Control Induction Motor Drive. 2nd Int. Conf. Control. Instrumentation Energy Commun. 358–362 (2016)
28.
Zurück zum Zitat C. Liu and Y. Luo, Overview of Advanced Control Strategies for Electric Machines, vol. 3, no. 2 (2017) C. Liu and Y. Luo, Overview of Advanced Control Strategies for Electric Machines, vol. 3, no. 2 (2017)
30.
Zurück zum Zitat R. Srinivasan, PowerFactory as a Software Stand-in for Hardware in Hardware-In-Loop Testing, in PowerFactory Applications for Power System Analysis, eds. by F. M. Gonzalez-Longatt, J. L. Rueda, Springer International (2014) R. Srinivasan, PowerFactory as a Software Stand-in for Hardware in Hardware-In-Loop Testing, in PowerFactory Applications for Power System Analysis, eds. by F. M. Gonzalez-Longatt, J. L. Rueda, Springer International (2014)
31.
Zurück zum Zitat N. Quang, Vector Control of Three-Phase AC Machines (Springer, Berlin Heidelberg, 2015)CrossRef N. Quang, Vector Control of Three-Phase AC Machines (Springer, Berlin Heidelberg, 2015)CrossRef
32.
Zurück zum Zitat W. Leonhard, Control of Electrical Drives (Springer, Berlin Heidelberg, 2001)CrossRef W. Leonhard, Control of Electrical Drives (Springer, Berlin Heidelberg, 2001)CrossRef
33.
Zurück zum Zitat D. Grahame Holmes, Thomas A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley-IEEE Press (2003) D. Grahame Holmes, Thomas A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley-IEEE Press (2003)
34.
Zurück zum Zitat V. K. Pavuluri, X. Wang, J. Long, G. Zhuo and W. Lian, Field Oriented Control of Induction Motors Using Symmetrical Optimum Method with Applications in Hybrid Electric Vehicles, in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC) (Montreal, QC, 2015) pp. 1–6 V. K. Pavuluri, X. Wang, J. Long, G. Zhuo and W. Lian, Field Oriented Control of Induction Motors Using Symmetrical Optimum Method with Applications in Hybrid Electric Vehicles, in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC) (Montreal, QC, 2015) pp. 1–6
Metadaten
Titel
Dynamic Modelling and Co-simulation Between MATLAB–Simulink and DIgSILENT PowerFactory of Electric Railway Traction Systems
verfasst von
Luis Chiza
Jaime Cepeda
Jonathan Riofrio
Santiago Chamba
Marcelo Pozo
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-54124-8_4