Skip to main content
Erschienen in: Pattern Analysis and Applications 4/2018

16.06.2017 | Theoretical Advances

Dynamic protein–protein interaction networks construction using firefly algorithm

verfasst von: Moslem Mohammadi Jenghara, Hossein Ebrahimpour-Komleh, Hamid Parvin

Erschienen in: Pattern Analysis and Applications | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protein–protein interaction (PPI) networks are dynamic in the real world. That is, at different times and under different conditions, the interaction among proteins may or may not be active. In different dataset, PPI networks might be gathered as static or dynamic networks. For the conversion of static PPI networks to time graphs, i.e., dynamic PPI networks, additional information like gene expression and gene co-expression profiles is used. One of the challenges in system biology is to determine appropriate thresholds for converting static PPI networks to dynamic PPI networks based on active proteins. In the available methods, fixed thresholds are used for all genes. However, the purpose of this study is to determine an adaptive unique threshold for each gene. In this study, the available additional information at different times and conditions and gold-standard protein complexes was employed to determine fitting thresholds. By so doing, the problem is converted into an optimization problem. Thereafter, the problem is solved using the firefly meta-heuristic optimization algorithm. One of the most remarkable aspects of this study is determining the attractiveness function in the firefly algorithm. In this study, attraction is defined as a combination of standard complexes and gene co-expressions. Then, active proteins are specified utilizing the created thresholds. The MCL, ClusterOne, MCODE and Coach algorithms are used for final evaluation. The experimental results about BioGRID dataset and CYC2008 gold-standard protein complexes indicated that the produced dynamic PPI networks by the proposed method have better results than the earlier methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anthony T (2006) A brief history of systems biology. Pl Cell 18:2420–2430CrossRef Anthony T (2006) A brief history of systems biology. Pl Cell 18:2420–2430CrossRef
2.
Zurück zum Zitat De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807CrossRef De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807CrossRef
3.
Zurück zum Zitat Taheri G, Habibi M, Wong L, Eslahchi C (2013) Disruption of protein complexes. J Bioinform Comput Biol 11(03):1341008CrossRef Taheri G, Habibi M, Wong L, Eslahchi C (2013) Disruption of protein complexes. J Bioinform Comput Biol 11(03):1341008CrossRef
4.
Zurück zum Zitat Shen X, Yi L, Jiang X, He T, Hu X, Yang J (2016) Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression. PLoS ONE 11(4):e0153967CrossRef Shen X, Yi L, Jiang X, He T, Hu X, Yang J (2016) Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression. PLoS ONE 11(4):e0153967CrossRef
5.
Zurück zum Zitat Zhang Y, Du N, Li K, Feng J, Jia K, Zhang A (2013) Critical protein detection in dynamic PPI networks with multi-source integrated deep belief nets. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 29–36 Zhang Y, Du N, Li K, Feng J, Jia K, Zhang A (2013) Critical protein detection in dynamic PPI networks with multi-source integrated deep belief nets. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 29–36
6.
Zurück zum Zitat Chen B, Fan W, Liu J, Wu FX (2014) Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks. Br Bioinform 15(2):177–194CrossRef Chen B, Fan W, Liu J, Wu FX (2014) Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks. Br Bioinform 15(2):177–194CrossRef
7.
Zurück zum Zitat Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125CrossRef Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125CrossRef
8.
Zurück zum Zitat Wang J, Peng X, Li M, Luo Y, Pan Y (2011) Active protein interaction network and its application on protein complex detection. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–42 Wang J, Peng X, Li M, Luo Y, Pan Y (2011) Active protein interaction network and its application on protein complex detection. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–42
10.
Zurück zum Zitat Serra A, Fratello M, Greco D, Tagliaferri R (2016) Data integration in genomics and systems biology. In: IEEE congress on evolutionary computation (CEC), pp 1272–1279 Serra A, Fratello M, Greco D, Tagliaferri R (2016) Data integration in genomics and systems biology. In: IEEE congress on evolutionary computation (CEC), pp 1272–1279
11.
Zurück zum Zitat Xu C, Tao D, Li Y, Xu C (2013) Large-margin multi-view Gaussian process for image classification. In ACM proceedings of the fifth international conference on internet multimedia computing and service, pp 7–12 Xu C, Tao D, Li Y, Xu C (2013) Large-margin multi-view Gaussian process for image classification. In ACM proceedings of the fifth international conference on internet multimedia computing and service, pp 7–12
12.
Zurück zum Zitat Wang J, Peng X, Li M, Luo Y, Pan Y (2011) Active protein interaction network and its application on protein complex detection. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–42 Wang J, Peng X, Li M, Luo Y, Pan Y (2011) Active protein interaction network and its application on protein complex detection. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–42
13.
Zurück zum Zitat Tang X, Wang J, Liu B, Li M, Chen G, Pan Y (2011) A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinform 12(1):339CrossRef Tang X, Wang J, Liu B, Li M, Chen G, Pan Y (2011) A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinform 12(1):339CrossRef
14.
Zurück zum Zitat Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J (2016) Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods 110:90–96CrossRef Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J (2016) Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods 110:90–96CrossRef
15.
Zurück zum Zitat Hanna EM, Zaki N, Amin A (2015) Detecting protein complexes in protein interaction networks modeled as gene expression biclusters. PLoS ONE 10(12):e0144163CrossRef Hanna EM, Zaki N, Amin A (2015) Detecting protein complexes in protein interaction networks modeled as gene expression biclusters. PLoS ONE 10(12):e0144163CrossRef
16.
Zurück zum Zitat Shen X, LiY, Jiang X, Zhao Y, He T, Yang J (2015) Detecting temporal protein complexes based on neighbor closeness and time course protein interaction networks. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 109–112 Shen X, LiY, Jiang X, Zhao Y, He T, Yang J (2015) Detecting temporal protein complexes based on neighbor closeness and time course protein interaction networks. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 109–112
17.
Zurück zum Zitat Lei X, Wang F, Wu FX, Zhang A, Pedrycz W (2016) Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Inf Sci 329:303–316CrossRef Lei X, Wang F, Wu FX, Zhang A, Pedrycz W (2016) Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Inf Sci 329:303–316CrossRef
18.
Zurück zum Zitat Kakade SM, Foster DP (2007) Multi-view regression via canonical correlation analysis. In: International conference on computational learning theory. Springer, Berlin, pp 82–96 Kakade SM, Foster DP (2007) Multi-view regression via canonical correlation analysis. In: International conference on computational learning theory. Springer, Berlin, pp 82–96
20.
Zurück zum Zitat Xu C, Tao D, Xu C (2015) Multi-view learning with incomplete views. IEEE Trans Image Process 24(12):5812–5825MathSciNetCrossRef Xu C, Tao D, Xu C (2015) Multi-view learning with incomplete views. IEEE Trans Image Process 24(12):5812–5825MathSciNetCrossRef
21.
Zurück zum Zitat Parvin H, Alizadeh H, Fathy M, Minaei-Bidgoli B (2008) Improved face detection using spatial histogram features. In: International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2008, July 14–17, 2008, Las Vegas Nevada, USA, pp 381–386. ISBN 1-60132-078-7IPCV Parvin H, Alizadeh H, Fathy M, Minaei-Bidgoli B (2008) Improved face detection using spatial histogram features. In: International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2008, July 14–17, 2008, Las Vegas Nevada, USA, pp 381–386. ISBN 1-60132-078-7IPCV
22.
Zurück zum Zitat Parvin H, Minaei-Bidgoli B (2015) A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm. Pattern Anal Appl 18(1):87–112MathSciNetCrossRef Parvin H, Minaei-Bidgoli B (2015) A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm. Pattern Anal Appl 18(1):87–112MathSciNetCrossRef
23.
Zurück zum Zitat Lee CP, Lin WS (2016) Using the two-population genetic algorithm with distance-based k-nearest neighbour voting classifier for high-dimensional data. Int J Data Min Bioinform 14(4):315–331MathSciNetCrossRef Lee CP, Lin WS (2016) Using the two-population genetic algorithm with distance-based k-nearest neighbour voting classifier for high-dimensional data. Int J Data Min Bioinform 14(4):315–331MathSciNetCrossRef
24.
Zurück zum Zitat Zhu M, Liu S, Jiang J (2016) A hybrid method for learning multi-dimensional Bayesian network classifiers based on an optimization model. Appl Intell 44(1):123–148CrossRef Zhu M, Liu S, Jiang J (2016) A hybrid method for learning multi-dimensional Bayesian network classifiers based on an optimization model. Appl Intell 44(1):123–148CrossRef
25.
Zurück zum Zitat Parvin H, Mohammadi M, Rezaei Z (2012) Face identification based on Gabor-wavelet features. Int J Digit Content Technol Appl 6(1):247–255CrossRef Parvin H, Mohammadi M, Rezaei Z (2012) Face identification based on Gabor-wavelet features. Int J Digit Content Technol Appl 6(1):247–255CrossRef
26.
Zurück zum Zitat Khan MA, Shahzad W, Baig AR (2016) Protein classification via an ant-inspired association rules-based classifier. Int J Bio-Inspired Comput 8(1):51–65CrossRef Khan MA, Shahzad W, Baig AR (2016) Protein classification via an ant-inspired association rules-based classifier. Int J Bio-Inspired Comput 8(1):51–65CrossRef
27.
Zurück zum Zitat Parvin H, Minaei-Bidgoli B, Alinejad-Rokny H (2013) A new imbalanced learning and dictions tree method for breast cancer diagnosis. J Bionanosci 7(6):673–678CrossRef Parvin H, Minaei-Bidgoli B, Alinejad-Rokny H (2013) A new imbalanced learning and dictions tree method for breast cancer diagnosis. J Bionanosci 7(6):673–678CrossRef
28.
Zurück zum Zitat Sun J, Garibaldi JM, Hodgman C (2012) Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(1):185–202CrossRef Sun J, Garibaldi JM, Hodgman C (2012) Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(1):185–202CrossRef
29.
Zurück zum Zitat Adewumi AO, Arasomwan MA (2016) On the performance of particle swarm optimisation with (out) some control parameters for global optimisation. Int J Bio-Inspired Comput 8(1):14–32CrossRef Adewumi AO, Arasomwan MA (2016) On the performance of particle swarm optimisation with (out) some control parameters for global optimisation. Int J Bio-Inspired Comput 8(1):14–32CrossRef
30.
Zurück zum Zitat Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspired Comput 8(1):33–41CrossRef Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspired Comput 8(1):33–41CrossRef
31.
Zurück zum Zitat Castelli M, Vanneschi L, Popovič A (2016) Parameter evaluation of geometric semantic genetic programming in pharmacokinetics. Int J Bio-Inspired Comput 8(1):42–50CrossRef Castelli M, Vanneschi L, Popovič A (2016) Parameter evaluation of geometric semantic genetic programming in pharmacokinetics. Int J Bio-Inspired Comput 8(1):42–50CrossRef
32.
Zurück zum Zitat Rao BS, Vaisakh K (2016) Multi-objective adaptive clonal selection algorithm for solving optimal power flow problem with load uncertainty. Int J Bio-Inspired Comput 8(2):67–83CrossRef Rao BS, Vaisakh K (2016) Multi-objective adaptive clonal selection algorithm for solving optimal power flow problem with load uncertainty. Int J Bio-Inspired Comput 8(2):67–83CrossRef
33.
Zurück zum Zitat Cai Q, Ma L, Gong M, Tian D (2016) A survey on network community detection based on evolutionary computation. Int J Bio-Inspired Comput 8(2):84–98CrossRef Cai Q, Ma L, Gong M, Tian D (2016) A survey on network community detection based on evolutionary computation. Int J Bio-Inspired Comput 8(2):84–98CrossRef
34.
Zurück zum Zitat Junior LDRDSES, Nedjah N (2016) Distributed strategy for robots recruitment in swarm-based systems. Int J Bio-Inspired Comput 8(2):99–108CrossRef Junior LDRDSES, Nedjah N (2016) Distributed strategy for robots recruitment in swarm-based systems. Int J Bio-Inspired Comput 8(2):99–108CrossRef
35.
Zurück zum Zitat Jia Z, Duan H, Shi Y (2016) Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int J Bio-Inspired Comput 8(2):109–121CrossRef Jia Z, Duan H, Shi Y (2016) Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int J Bio-Inspired Comput 8(2):109–121CrossRef
36.
Zurück zum Zitat Srivastava PR (2016) Test case optimisation a nature inspired approach using bacteriologic algorithm. Int J Bio-Inspired Comput 8(2):122–131CrossRef Srivastava PR (2016) Test case optimisation a nature inspired approach using bacteriologic algorithm. Int J Bio-Inspired Comput 8(2):122–131CrossRef
37.
Zurück zum Zitat Xu Z, Unveren A, Acan A (2016) Probability collectives hybridised with differential evolution for global optimisation. Int J Bio-Inspired Comput 8(3):133–153CrossRef Xu Z, Unveren A, Acan A (2016) Probability collectives hybridised with differential evolution for global optimisation. Int J Bio-Inspired Comput 8(3):133–153CrossRef
38.
Zurück zum Zitat Osuna Enciso V, Cuevas E, Oliva D, Sossa H, Pérez Cisneros M (2016) A bio-inspired evolutionary algorithm: allostatic optimization. Int J Bio-Inspired Comput 8(3):154–169CrossRef Osuna Enciso V, Cuevas E, Oliva D, Sossa H, Pérez Cisneros M (2016) A bio-inspired evolutionary algorithm: allostatic optimization. Int J Bio-Inspired Comput 8(3):154–169CrossRef
39.
Zurück zum Zitat Ahirwal MK, Kumar A, Singh GK (2016) Study of ABC and PSO algorithms as optimised adaptive noise canceller for EEG/ERP. Int J Bio-Inspired Comput 8(3):170–183CrossRef Ahirwal MK, Kumar A, Singh GK (2016) Study of ABC and PSO algorithms as optimised adaptive noise canceller for EEG/ERP. Int J Bio-Inspired Comput 8(3):170–183CrossRef
40.
Zurück zum Zitat Niknam T, Kavousi Fard A (2016) Optimal energy management of smart renewable micro-grids in the reconfigurable systems using adaptive harmony search algorithm. Int J Bio-Inspired Comput 8(3):184–194CrossRef Niknam T, Kavousi Fard A (2016) Optimal energy management of smart renewable micro-grids in the reconfigurable systems using adaptive harmony search algorithm. Int J Bio-Inspired Comput 8(3):184–194CrossRef
41.
Zurück zum Zitat Gu X (2010) Systems biology approaches to the computational modelling of trypanothione metabolism in Trypanosoma brucei. Doctoral dissertation, University of Glasgow Gu X (2010) Systems biology approaches to the computational modelling of trypanothione metabolism in Trypanosoma brucei. Doctoral dissertation, University of Glasgow
42.
Zurück zum Zitat Fonseca R, Paluszewski M, Winter P (2010) Protein structure prediction using bee colony optimization metaheuristic. J Math Model Algorithms 9(2):181–194MathSciNetCrossRef Fonseca R, Paluszewski M, Winter P (2010) Protein structure prediction using bee colony optimization metaheuristic. J Math Model Algorithms 9(2):181–194MathSciNetCrossRef
43.
Zurück zum Zitat Rodriguez-Fernandez M, Egea JA, Banga JR (2006) Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform 7(1):483CrossRef Rodriguez-Fernandez M, Egea JA, Banga JR (2006) Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform 7(1):483CrossRef
44.
Zurück zum Zitat Abdullah A, Deris S, Anwar S, Arjunan SN (2013) An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PLoS ONE 8(3):e56310CrossRef Abdullah A, Deris S, Anwar S, Arjunan SN (2013) An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PLoS ONE 8(3):e56310CrossRef
45.
Zurück zum Zitat Maher B, Albrecht AA, Loomes M, Yang XS, Steinhöfel K (2014) A firefly-inspired method for protein structure prediction in lattice models. Biomolecules 4(1):56–75CrossRef Maher B, Albrecht AA, Loomes M, Yang XS, Steinhöfel K (2014) A firefly-inspired method for protein structure prediction in lattice models. Biomolecules 4(1):56–75CrossRef
46.
Zurück zum Zitat Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46CrossRef Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46CrossRef
47.
Zurück zum Zitat Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13(1):328CrossRef Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13(1):328CrossRef
48.
Zurück zum Zitat Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets. Nucl Acids Res 41:D991–D995CrossRef Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets. Nucl Acids Res 41:D991–D995CrossRef
50.
Zurück zum Zitat OuYang L, Dai DQ, Li XL, Wu M, Zhang XF, Yang P (2014) Detecting temporal protein complexes from dynamic protein–protein interaction networks. BMC Bioinform 15(1):335CrossRef OuYang L, Dai DQ, Li XL, Wu M, Zhang XF, Yang P (2014) Detecting temporal protein complexes from dynamic protein–protein interaction networks. BMC Bioinform 15(1):335CrossRef
51.
Zurück zum Zitat Pu S, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of yeast protein complexes. Nucl Acids Res 37(3):825–831CrossRef Pu S, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of yeast protein complexes. Nucl Acids Res 37(3):825–831CrossRef
52.
Zurück zum Zitat Van Dongen S M (2001) Graph clustering by flow simulation. Doctoral dissertation Van Dongen S M (2001) Graph clustering by flow simulation. Doctoral dissertation
53.
Zurück zum Zitat Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):2CrossRef Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):2CrossRef
54.
Zurück zum Zitat Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472CrossRef Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472CrossRef
55.
Zurück zum Zitat Wu M, Li X, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform 10:169CrossRef Wu M, Li X, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform 10:169CrossRef
56.
Zurück zum Zitat Wang J, Peng X, Li M, Pan Y (2013) Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2):301–312CrossRef Wang J, Peng X, Li M, Pan Y (2013) Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2):301–312CrossRef
Metadaten
Titel
Dynamic protein–protein interaction networks construction using firefly algorithm
verfasst von
Moslem Mohammadi Jenghara
Hossein Ebrahimpour-Komleh
Hamid Parvin
Publikationsdatum
16.06.2017
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 4/2018
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-017-0626-7

Weitere Artikel der Ausgabe 4/2018

Pattern Analysis and Applications 4/2018 Zur Ausgabe