Skip to main content
Erschienen in: Chinese Journal of Mechanical Engineering 2/2017

17.03.2017 | Original Article

Dynamic Stability Analysis of Linear Time-varying Systems via an Extended Modal Identification Approach

verfasst von: Zhisai MA, Li LIU, Sida ZHOU, Frank NAETS, Ward HEYLEN, Wim DESMET

Erschienen in: Chinese Journal of Mechanical Engineering | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the “frozen-time” assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system’s stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat HEYLEN W, LAMMENS S, SAS P. Modal analysis theory and testing[M]. Leuven: Katholieke Universiteit Leuven, 2007. HEYLEN W, LAMMENS S, SAS P. Modal analysis theory and testing[M]. Leuven: Katholieke Universiteit Leuven, 2007.
2.
Zurück zum Zitat WALSH P L, LAMANCUSA J S. A variable stiffness vibration absorber for minimization of transient vibrations[J]. Journal of Sound and Vibration, 1992, 158(2): 195–211. WALSH P L, LAMANCUSA J S. A variable stiffness vibration absorber for minimization of transient vibrations[J]. Journal of Sound and Vibration, 1992, 158(2): 195–211.
3.
Zurück zum Zitat AU F T K, JIANG R J, CHEUNG Y K. Parameter identification of vehicles moving on continuous bridges[J]. Journal of Sound and Vibration, 2004, 269(1–2): 91–111. AU F T K, JIANG R J, CHEUNG Y K. Parameter identification of vehicles moving on continuous bridges[J]. Journal of Sound and Vibration, 2004, 269(1–2): 91–111.
4.
Zurück zum Zitat JOSHI A. Free vibration characteristics of variable mass rockets having large axial thrust/acceleration[J]. Journal of Sound and Vibration, 1995, 187(4): 727–736. JOSHI A. Free vibration characteristics of variable mass rockets having large axial thrust/acceleration[J]. Journal of Sound and Vibration, 1995, 187(4): 727–736.
5.
Zurück zum Zitat VERBOVEN P, CAUBERGHE B, GUILLAUME P, et al. Modal parameter estimation and monitoring for on-line flight flutter analysis[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 587–610. VERBOVEN P, CAUBERGHE B, GUILLAUME P, et al. Modal parameter estimation and monitoring for on-line flight flutter analysis[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 587–610.
6.
Zurück zum Zitat CHU M, ZHANG Y, CHEN G, et al. Effects of joint controller on analytical modal analysis of rotational flexible manipulator[J]. Chinese Journal of Mechanical Engineering, 2015, 28(3): 460–469. CHU M, ZHANG Y, CHEN G, et al. Effects of joint controller on analytical modal analysis of rotational flexible manipulator[J]. Chinese Journal of Mechanical Engineering, 2015, 28(3): 460–469.
7.
Zurück zum Zitat KRISHNAMURTHY K, CHAO M C. Active vibration control during deployment of space structures[J]. Journal of Sound and Vibration, 1992, 152(2): 205–218. KRISHNAMURTHY K, CHAO M C. Active vibration control during deployment of space structures[J]. Journal of Sound and Vibration, 1992, 152(2): 205–218.
8.
Zurück zum Zitat AVENDANO-VALENCIA L D, FASSOIS S D. Stationary and non-stationary random vibration modelling and analysis for an operating wind turbine[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 263–285. AVENDANO-VALENCIA L D, FASSOIS S D. Stationary and non-stationary random vibration modelling and analysis for an operating wind turbine[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 263–285.
9.
Zurück zum Zitat GARIBALDI L, FASSOIS S. MSSP special issue on the identification of time varying structures and systems[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 1–2. GARIBALDI L, FASSOIS S. MSSP special issue on the identification of time varying structures and systems[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 1–2.
10.
Zurück zum Zitat WU M-Y. On stability of linear time-varying systems[J]. International Journal of Systems Science, 1984, 15(2): 137–150. WU M-Y. On stability of linear time-varying systems[J]. International Journal of Systems Science, 1984, 15(2): 137–150.
11.
Zurück zum Zitat ZADEH L A. Frequency analysis of variable networks[J]. Proceedings of the Institute of Radio Engineers, 1950, 38(3): 291–299. ZADEH L A. Frequency analysis of variable networks[J]. Proceedings of the Institute of Radio Engineers, 1950, 38(3): 291–299.
12.
Zurück zum Zitat RAMNATH R V. Multiple scales theory and aerospace applications[M]. Reston: American Institute of Aeronautics and Astronautics, 2010. RAMNATH R V. Multiple scales theory and aerospace applications[M]. Reston: American Institute of Aeronautics and Astronautics, 2010.
13.
Zurück zum Zitat WU M-Y. A new concept of eigenvalues and eigenvectors and its applications[J]. IEEE Transactions on Automatic Control, 1980, 25(4): 824–826. WU M-Y. A new concept of eigenvalues and eigenvectors and its applications[J]. IEEE Transactions on Automatic Control, 1980, 25(4): 824–826.
14.
Zurück zum Zitat KAMEN E W. The poles and zeros of a linear time-varying system[J]. Linear Algebra and Its Applications, 1988, 98: 263–289. KAMEN E W. The poles and zeros of a linear time-varying system[J]. Linear Algebra and Its Applications, 1988, 98: 263–289.
15.
Zurück zum Zitat O’BRIEN R T, JR., IGLESIAS P A. Poles and zeros for time-varying systems[C]//The 16th American Control Conference, Evanston, IL, USA, June 4–6, 1997: 2 672–2 676. O’BRIEN R T, JR., IGLESIAS P A. Poles and zeros for time-varying systems[C]//The 16th American Control Conference, Evanston, IL, USA, June 4–6, 1997: 2 672–2 676.
16.
Zurück zum Zitat O’BRIEN R T, JR., IGLESIAS P A. On the poles and zeros of linear, time-varying systems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(5): 565–577. O’BRIEN R T, JR., IGLESIAS P A. On the poles and zeros of linear, time-varying systems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(5): 565–577.
17.
Zurück zum Zitat ZENGER K, YLINEN R. Poles and zeros of multivariable linear time-varying systems[C]//The 15th IFAC World Congress, Barcelona, Spain, July 21–26, 2002: 261–266. ZENGER K, YLINEN R. Poles and zeros of multivariable linear time-varying systems[C]//The 15th IFAC World Congress, Barcelona, Spain, July 21–26, 2002: 261–266.
18.
Zurück zum Zitat PETSOUNIS K A, FASSOIS S D. Parametric time-domain methods for the identification of vibrating structures-a critical comparison and assessment[J]. Mechanical Systems and Signal Processing, 2001, 15(6): 1 031–1 060. PETSOUNIS K A, FASSOIS S D. Parametric time-domain methods for the identification of vibrating structures-a critical comparison and assessment[J]. Mechanical Systems and Signal Processing, 2001, 15(6): 1 031–1 060.
19.
Zurück zum Zitat POULIMENOS A G, FASSOIS S D. Parametric time-domain methods for non-stationary random vibration modelling and analysis—a critical survey and comparison[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 763–816. POULIMENOS A G, FASSOIS S D. Parametric time-domain methods for non-stationary random vibration modelling and analysis—a critical survey and comparison[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 763–816.
20.
Zurück zum Zitat SPIRIDONAKOS M D, FASSOIS S D. Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA(FS-TARMA) models – a critical survey[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 175– 224. SPIRIDONAKOS M D, FASSOIS S D. Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA(FS-TARMA) models – a critical survey[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 175– 224.
21.
Zurück zum Zitat VERHAEGEN M, YU X. A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems[J]. Automatica, 1995, 31(2): 201–216. VERHAEGEN M, YU X. A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems[J]. Automatica, 1995, 31(2): 201–216.
22.
Zurück zum Zitat LIU K. Identification of linear time-varying systems[J]. Journal of Sound and Vibration, 1997, 206(4): 487–505. LIU K. Identification of linear time-varying systems[J]. Journal of Sound and Vibration, 1997, 206(4): 487–505.
23.
Zurück zum Zitat LIU K. Extension of modal analysis to linear time-varying systems[J]. Journal of Sound and Vibration, 1999, 226(1): 149–167. LIU K. Extension of modal analysis to linear time-varying systems[J]. Journal of Sound and Vibration, 1999, 226(1): 149–167.
24.
Zurück zum Zitat LIU K, DENG L. Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm[J]. Mechanical Systems and Signal Processing, 2006, 20(1): 94–113. LIU K, DENG L. Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm[J]. Mechanical Systems and Signal Processing, 2006, 20(1): 94–113.
25.
Zurück zum Zitat SHOKOOHI S, SILVERMAN L M. Identification and model reduction of time-varying discrete-time systems[J]. Automatica, 1987, 23(4): 509–521. SHOKOOHI S, SILVERMAN L M. Identification and model reduction of time-varying discrete-time systems[J]. Automatica, 1987, 23(4): 509–521.
26.
Zurück zum Zitat MAJJI M, JUANG J-N, JUNKINS J L. Time-varying eigensystem realization algorithm[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 13–28. MAJJI M, JUANG J-N, JUNKINS J L. Time-varying eigensystem realization algorithm[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 13–28.
27.
Zurück zum Zitat MAJJI M, JUANG J-N, JUNKINS J L. Observer/Kalman-filter time-varying system identification[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 887–900. MAJJI M, JUANG J-N, JUNKINS J L. Observer/Kalman-filter time-varying system identification[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 887–900.
28.
Zurück zum Zitat BELLINO A, FASANA A, GANDINO E, et al. A time-varying inertia pendulum: analytical modelling and experimental identification[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 120–138. BELLINO A, FASANA A, GANDINO E, et al. A time-varying inertia pendulum: analytical modelling and experimental identification[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2): 120–138.
29.
Zurück zum Zitat JHINAOUI A, MEVEL L, MORLIER J. A new SSI algorithm for LPTV systems: Application to a hinged-bladed helicopter[J]. Mechanical Systems and Signal Processing, 2014, 42(1–2): 152–166. JHINAOUI A, MEVEL L, MORLIER J. A new SSI algorithm for LPTV systems: Application to a hinged-bladed helicopter[J]. Mechanical Systems and Signal Processing, 2014, 42(1–2): 152–166.
30.
Zurück zum Zitat SHMALIY Y S. Continuous-time systems[M]. Dordrecht, Netherlands: Springer, 2007. SHMALIY Y S. Continuous-time systems[M]. Dordrecht, Netherlands: Springer, 2007.
31.
Zurück zum Zitat WU M-Y, HOROWITZ I M, DENNISON J C. On solution, stability and transformation of linear time-varying systems[J]. International Journal of Control, 1975, 22(2): 169–180. WU M-Y, HOROWITZ I M, DENNISON J C. On solution, stability and transformation of linear time-varying systems[J]. International Journal of Control, 1975, 22(2): 169–180.
32.
Zurück zum Zitat WU M-Y. Solvability and representation of linear time-varying systems[J]. International Journal of Control, 1980, 31(5): 937–945. WU M-Y. Solvability and representation of linear time-varying systems[J]. International Journal of Control, 1980, 31(5): 937–945.
33.
Zurück zum Zitat D’ANGELO H. Linear time-varying systems: analysis and synthesis[M]. Boston: Allyn & Bacon, 1970. D’ANGELO H. Linear time-varying systems: analysis and synthesis[M]. Boston: Allyn & Bacon, 1970.
34.
Zurück zum Zitat KAILATH T. Linear systems[M]. Englewood Cliffs, NJ: Prentice Hall, 1980. KAILATH T. Linear systems[M]. Englewood Cliffs, NJ: Prentice Hall, 1980.
35.
Zurück zum Zitat WILKINSON J H. The algebraic eigenvalue problem[M]. Oxford: Clarendon Press, 1965. WILKINSON J H. The algebraic eigenvalue problem[M]. Oxford: Clarendon Press, 1965.
36.
Zurück zum Zitat MARKUS L, YAMABE H. Global stability criteria for differential systems[J]. Osaka Mathematical Journal, 1960, 12(2): 305–317. MARKUS L, YAMABE H. Global stability criteria for differential systems[J]. Osaka Mathematical Journal, 1960, 12(2): 305–317.
37.
Zurück zum Zitat MA Z-S, LIU L, ZHOU S-D, et al. Modal parameter estimation of the coupled moving-mass and beam time-varying system[C]//The ISMA2014 International Conference on Noise and Vibration Engineering, Leuven, Belgium, September 15–17, 2014: 587–596. MA Z-S, LIU L, ZHOU S-D, et al. Modal parameter estimation of the coupled moving-mass and beam time-varying system[C]//The ISMA2014 International Conference on Noise and Vibration Engineering, Leuven, Belgium, September 15–17, 2014: 587–596.
Metadaten
Titel
Dynamic Stability Analysis of Linear Time-varying Systems via an Extended Modal Identification Approach
verfasst von
Zhisai MA
Li LIU
Sida ZHOU
Frank NAETS
Ward HEYLEN
Wim DESMET
Publikationsdatum
17.03.2017
Verlag
Chinese Mechanical Engineering Society
Erschienen in
Chinese Journal of Mechanical Engineering / Ausgabe 2/2017
Print ISSN: 1000-9345
Elektronische ISSN: 2192-8258
DOI
https://doi.org/10.1007/s10033-017-0075-7

Weitere Artikel der Ausgabe 2/2017

Chinese Journal of Mechanical Engineering 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.