Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Dynamics of Acoustically Levitated Drops

verfasst von : Zehui Zhang, Kangqi Liu, Duyang Zang

Erschienen in: Acoustic Levitation

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Levitation of liquid droplet is one of the most important applications of acoustic levitation, not only for the study of fluid physics, but also for bio/chemical analysis. In this chapter, we review various behaviors of acoustically levitated drops, ranging from evolution of static equilibrium shape, oscillation, to different drop instabilities. We also discuss drop manipulation by using acoustic levitation. At last, we propose several possible future directions to stimulate multi-discipline researches based on the technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.M. Yahua Liu, X. Xu, Pancake bouncing on superhydrophobic surfaces. Nat Phys. 10(7), 515–519 (2014) L.M. Yahua Liu, X. Xu, Pancake bouncing on superhydrophobic surfaces. Nat Phys. 10(7), 515–519 (2014)
2.
Zurück zum Zitat D.B.V. Bergeron, J.Y Martin, L Vovelle, Controlling droplet deposition with polymer additives. Nature. 405(772), 6788(2000) D.B.V. Bergeron, J.Y Martin, L Vovelle, Controlling droplet deposition with polymer additives. Nature. 405(772), 6788(2000)
3.
Zurück zum Zitat D. Zang, X. Geng, Y. Zhang, Y. Chen, Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matter 9, 394 (2013)CrossRef D. Zang, X. Geng, Y. Zhang, Y. Chen, Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matter 9, 394 (2013)CrossRef
4.
Zurück zum Zitat M. Mohr, R.K. Wunderlich, S. Koch et al., Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station. Microgravity Science and Technology (2019) M. Mohr, R.K. Wunderlich, S. Koch et al., Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station. Microgravity Science and Technology (2019)
5.
Zurück zum Zitat D. Zang, Y. Yu, Z. Chen, X. Li, H. Wu, X. Geng, Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions. Adv. Colloid Interface Sci. 243, 77–85 (2017)CrossRef D. Zang, Y. Yu, Z. Chen, X. Li, H. Wu, X. Geng, Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions. Adv. Colloid Interface Sci. 243, 77–85 (2017)CrossRef
6.
Zurück zum Zitat L. Hu, H.P. Wang, L.H. Li et al., Electrostatic levitation of plant seeds and flower buds. Chin. Phys. Lett. 29(6), 064101 (2012)CrossRef L. Hu, H.P. Wang, L.H. Li et al., Electrostatic levitation of plant seeds and flower buds. Chin. Phys. Lett. 29(6), 064101 (2012)CrossRef
7.
Zurück zum Zitat R. Liu, T. Volkmann, D. Herlach, Undercooling and solidification of Si by electromagnetic levitation. Acta Matter. 49, 439–444 (2001) R. Liu, T. Volkmann, D. Herlach, Undercooling and solidification of Si by electromagnetic levitation. Acta Matter. 49, 439–444 (2001)
8.
Zurück zum Zitat A. Ashkin, J. Dziedzic, Optical levitation of liquid drops by radiation pressure. Science 187(4181), 1073–1075 (1975)CrossRef A. Ashkin, J. Dziedzic, Optical levitation of liquid drops by radiation pressure. Science 187(4181), 1073–1075 (1975)CrossRef
9.
Zurück zum Zitat D.L. Geng, W.J. Xie, N. Yan, B. Wei, Vertical vibration and shape oscillation of acoustically levitated water drops. Appl. Phys. Lett. 105(10), 104101–104104 (2014)CrossRef D.L. Geng, W.J. Xie, N. Yan, B. Wei, Vertical vibration and shape oscillation of acoustically levitated water drops. Appl. Phys. Lett. 105(10), 104101–104104 (2014)CrossRef
10.
Zurück zum Zitat C. Shen, W. Xie, B. Wei, Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement. Sci. China Phys. Mech. Astron. 12, 131–136 (2010) C. Shen, W. Xie, B. Wei, Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement. Sci. China Phys. Mech. Astron. 12, 131–136 (2010)
11.
Zurück zum Zitat A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, Evaporation of acoustically levitated droplets. J. Fluid Mech. 23(4), 471–486 (2002)MATH A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, Evaporation of acoustically levitated droplets. J. Fluid Mech. 23(4), 471–486 (2002)MATH
12.
Zurück zum Zitat A. L.Yarin, G. Brenn, D. Rensink, Evaporation of acoustically levitated droplets of binary liquid mixtures. Int J. Heat Fluid Flow. 23(4), 471–486 (2002) A. L.Yarin, G. Brenn, D. Rensink, Evaporation of acoustically levitated droplets of binary liquid mixtures. Int J. Heat Fluid Flow. 23(4), 471–486 (2002)
13.
Zurück zum Zitat G. Brenn, L.J. Deviprasath, F. Durst, C. Fink, Evaporation of acoustically levitated multi-component liquid droplets. Int. J. Heat Mass Trans. 50(25–26), 5073–5086 (2007)CrossRef G. Brenn, L.J. Deviprasath, F. Durst, C. Fink, Evaporation of acoustically levitated multi-component liquid droplets. Int. J. Heat Mass Trans. 50(25–26), 5073–5086 (2007)CrossRef
14.
Zurück zum Zitat C.P. Lee, A.V. Anilkumar et al., Static shape and instability of an acoustically levitated liquid drop. Phys. Fluids A Fluid Dyn. 3(11), 2497 (1991)CrossRef C.P. Lee, A.V. Anilkumar et al., Static shape and instability of an acoustically levitated liquid drop. Phys. Fluids A Fluid Dyn. 3(11), 2497 (1991)CrossRef
15.
Zurück zum Zitat Y.R. Tian, R.G. Holt et al., Deformation and location of an acoustically levitated liquid-drop. J. Acoust. Soc. Am. 93(6), 3096–3104 (1993)CrossRef Y.R. Tian, R.G. Holt et al., Deformation and location of an acoustically levitated liquid-drop. J. Acoust. Soc. Am. 93(6), 3096–3104 (1993)CrossRef
16.
Zurück zum Zitat A.V. Anilkumar, C.P. Lee et al., Stability of an acoustically levitated and flattened drop—an experimental-study. Phys. Fluids a-Fluid Dyn. 5(11), 2763–2774 (1993)CrossRef A.V. Anilkumar, C.P. Lee et al., Stability of an acoustically levitated and flattened drop—an experimental-study. Phys. Fluids a-Fluid Dyn. 5(11), 2763–2774 (1993)CrossRef
17.
Zurück zum Zitat M. Barmatz, N. Jacobi, Equilibrium shapes of acoustically levitated liquid-drops. IEEE Trans. Sonics Ultrason. 27(3), 175 (1980) M. Barmatz, N. Jacobi, Equilibrium shapes of acoustically levitated liquid-drops. IEEE Trans. Sonics Ultrason. 27(3), 175 (1980)
18.
Zurück zum Zitat E.H. Trinh, C.J. Hsu, Equilibrium shapes of acoustically levitated drops. J. Acoust. Soc. Am. 79(5), 1335–1338 (1986)CrossRef E.H. Trinh, C.J. Hsu, Equilibrium shapes of acoustically levitated drops. J. Acoust. Soc. Am. 79(5), 1335–1338 (1986)CrossRef
19.
Zurück zum Zitat P.L. Marston, Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses-theory. J. Acoust. Soc. Am. 67(1), 15–26 (1980)CrossRef P.L. Marston, Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses-theory. J. Acoust. Soc. Am. 67(1), 15–26 (1980)CrossRef
20.
Zurück zum Zitat W.T. Shi, R.E. Apfel, Deformation and position of acoustically levitated liquid drops. J. Acoust. Soc. Am. 99(4), 1977–1984 (1996)CrossRef W.T. Shi, R.E. Apfel, Deformation and position of acoustically levitated liquid drops. J. Acoust. Soc. Am. 99(4), 1977–1984 (1996)CrossRef
21.
Zurück zum Zitat W.J. Xie, B. Wei, Dynamics of acoustically levitated disk sample. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 70(4), 046611 (2004)CrossRef W.J. Xie, B. Wei, Dynamics of acoustically levitated disk sample. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 70(4), 046611 (2004)CrossRef
22.
Zurück zum Zitat D. Zang, K. Lin et al., Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound. Appl. Phys. Lett. 110(12), 121602 (2017)CrossRef D. Zang, K. Lin et al., Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound. Appl. Phys. Lett. 110(12), 121602 (2017)CrossRef
23.
Zurück zum Zitat D.Y. Zang, Z.C. Zhai, L. Li, K.J. Lin, X.G. Li, X.G. Geng, Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids. Appl. Phys. Lett. 109, 101602 (2016) D.Y. Zang, Z.C. Zhai, L. Li, K.J. Lin, X.G. Li, X.G. Geng, Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids. Appl. Phys. Lett. 109, 101602 (2016)
24.
Zurück zum Zitat E. Becker, W.J. Hiller et al., Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189–210 (1991)CrossRef E. Becker, W.J. Hiller et al., Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189–210 (1991)CrossRef
25.
Zurück zum Zitat L. Rayleigh, On the capillary phenomena of jet. Proc. Royal Soc. London 29, 71–97 (1879)CrossRef L. Rayleigh, On the capillary phenomena of jet. Proc. Royal Soc. London 29, 71–97 (1879)CrossRef
26.
Zurück zum Zitat C.L. Shen, W.J. Xie et al., Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)CrossRef C.L. Shen, W.J. Xie et al., Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)CrossRef
27.
Zurück zum Zitat Z. Yan, W. Xie et al., Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop. Acta Phys. Sin. 60(6), 64302–064302 (2011) Z. Yan, W. Xie et al., Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop. Acta Phys. Sin. 60(6), 64302–064302 (2011)
28.
Zurück zum Zitat Z.L. Yan, W.J. Xie et al., The ninth-mode sectorial oscillation of acoustically levitated drops. Chin. Sci. Bull. 56(31), 3284–3288 (2011)CrossRef Z.L. Yan, W.J. Xie et al., The ninth-mode sectorial oscillation of acoustically levitated drops. Chin. Sci. Bull. 56(31), 3284–3288 (2011)CrossRef
29.
Zurück zum Zitat C.L. Shen, W.J. Xie et al., Non-axisymmetric oscillation of acoustically levitated water drops at specific frequencies. Chin. Phys. Lett. 27(7), 076801 (2010)CrossRef C.L. Shen, W.J. Xie et al., Non-axisymmetric oscillation of acoustically levitated water drops at specific frequencies. Chin. Phys. Lett. 27(7), 076801 (2010)CrossRef
30.
Zurück zum Zitat C. Shen, W.J. Xie, B. Wei, Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010) C. Shen, W.J. Xie, B. Wei, Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)
31.
Zurück zum Zitat X.P. Shao, W.J. Xie, Sectorial oscillation of acoustically levitated viscous drops. Acta Physica Sinica 61(13), 134302 (2012) X.P. Shao, W.J. Xie, Sectorial oscillation of acoustically levitated viscous drops. Acta Physica Sinica 61(13), 134302 (2012)
32.
Zurück zum Zitat D. Zang, Z. Chen et al., Sectorial oscillation of acoustically levitated nanoparticle-coated droplet. Appl. Phys. Lett. 108(3), 031603 (2016)CrossRef D. Zang, Z. Chen et al., Sectorial oscillation of acoustically levitated nanoparticle-coated droplet. Appl. Phys. Lett. 108(3), 031603 (2016)CrossRef
33.
Zurück zum Zitat C.P. Lee, A.V. Anilkumar et al., Static shape and instability of an acoustically levitated liquid-drop. Phys. Fluids a-Fluid Dyn. 3(11), 2497–2515 (1991)CrossRef C.P. Lee, A.V. Anilkumar et al., Static shape and instability of an acoustically levitated liquid-drop. Phys. Fluids a-Fluid Dyn. 3(11), 2497–2515 (1991)CrossRef
34.
Zurück zum Zitat L.C. Yao, X.C. Wu et al., Characterization of atomization and breakup of acoustically levitated drops with digital holography. Appl. Opt. 54(1), A23–A31 (2015)CrossRef L.C. Yao, X.C. Wu et al., Characterization of atomization and breakup of acoustically levitated drops with digital holography. Appl. Opt. 54(1), A23–A31 (2015)CrossRef
35.
Zurück zum Zitat M. Kawakami, Y. Abe et al., Effect of laser heating on nonlinear surface deformation of acoustically levitated droplet. Microgravity Sci. Technol. 22(3), 353–359 (2010)CrossRef M. Kawakami, Y. Abe et al., Effect of laser heating on nonlinear surface deformation of acoustically levitated droplet. Microgravity Sci. Technol. 22(3), 353–359 (2010)CrossRef
36.
Zurück zum Zitat B. Pathak, S. Basu, Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets. Phys. Fluids 28(12), 123302 (2016)CrossRef B. Pathak, S. Basu, Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets. Phys. Fluids 28(12), 123302 (2016)CrossRef
37.
Zurück zum Zitat S. Basu, A. Saha et al., Thermally induced secondary atomization of droplet in an acoustic field. Appl. Phys. Lett. 100(5), 054101 (2012)CrossRef S. Basu, A. Saha et al., Thermally induced secondary atomization of droplet in an acoustic field. Appl. Phys. Lett. 100(5), 054101 (2012)CrossRef
38.
Zurück zum Zitat S.D. Danilov, Breakup of a droplet in a high-intensity sound field. J. Acoust. Soc. Am. 92(5), 2747 (1992)CrossRef S.D. Danilov, Breakup of a droplet in a high-intensity sound field. J. Acoust. Soc. Am. 92(5), 2747 (1992)CrossRef
39.
Zurück zum Zitat A. Yarin, G. Brenn et al., Evaporation of acoustically levitated droplets. J. Fluid Mech. 399, 151–204 (1999) A. Yarin, G. Brenn et al., Evaporation of acoustically levitated droplets. J. Fluid Mech. 399, 151–204 (1999)
40.
Zurück zum Zitat B. Pathak, S. Basu, Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating. Phys. Rev. E 93(3), 033103 (2016)CrossRef B. Pathak, S. Basu, Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating. Phys. Rev. E 93(3), 033103 (2016)CrossRef
41.
Zurück zum Zitat D. Zang, L. Li, W. Di et al., Inducing drop to bubble transformation via resonance in ultrasound. Nat. Commun. 9, 3546 (2018) D. Zang, L. Li, W. Di et al., Inducing drop to bubble transformation via resonance in ultrasound. Nat. Commun. 9, 3546 (2018)
42.
Zurück zum Zitat S.M. Plesset, On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25(1), 96 (1954) S.M. Plesset, On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25(1), 96 (1954)
43.
Zurück zum Zitat G.A.S. Roberto, C.-D. Ohl, Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551–576 (2016)MathSciNetCrossRef G.A.S. Roberto, C.-D. Ohl, Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551–576 (2016)MathSciNetCrossRef
44.
Zurück zum Zitat Q. Zeng, S.R. Gonzalez-Avila, S. Ten Voorde, et al., Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability. J. Fluid Mech. (2018) Q. Zeng, S.R. Gonzalez-Avila, S. Ten Voorde, et al., Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability. J. Fluid Mech. (2018)
45.
Zurück zum Zitat N. Bjelobrk, M. Nabavi, D. Poulikakos, Acoustic levitator for contactless motion and merging of large droplets in air. J. Appl. Phys. 112(5), 053510 (2012)CrossRef N. Bjelobrk, M. Nabavi, D. Poulikakos, Acoustic levitator for contactless motion and merging of large droplets in air. J. Appl. Phys. 112(5), 053510 (2012)CrossRef
46.
Zurück zum Zitat S.L. Min, R.G. Holt et al., Simulation of drop dynamics in an acoustic positioning chamber. J. Acoust. Soc. Am. 91(6), 3157–3165 (1992)CrossRef S.L. Min, R.G. Holt et al., Simulation of drop dynamics in an acoustic positioning chamber. J. Acoust. Soc. Am. 91(6), 3157–3165 (1992)CrossRef
47.
Zurück zum Zitat D. Foresti, N. Majid et al., Acoustophoretic contactless transport and handling of matter in air. Proc Natl Acad Sci U S A 110(31), 12549–12554 (2013)CrossRef D. Foresti, N. Majid et al., Acoustophoretic contactless transport and handling of matter in air. Proc Natl Acad Sci U S A 110(31), 12549–12554 (2013)CrossRef
48.
Zurück zum Zitat K. Feng, Y. Liu, M. Cheng, Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation. J. Acoust. Soc. Am. 138(6), 3723–3732 (2015)CrossRef K. Feng, Y. Liu, M. Cheng, Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation. J. Acoust. Soc. Am. 138(6), 3723–3732 (2015)CrossRef
49.
Zurück zum Zitat P.L. Thomas Gilles, A.B.M. Andrade, et al., Acoustic levitation transportation of small objects using a ring-type vibrator, in Proceedings of the 2015 ICU International Congress on Ultrasonics, 2015, pp. 59–62, ed. by N.F. Declercq P.L. Thomas Gilles, A.B.M. Andrade, et al., Acoustic levitation transportation of small objects using a ring-type vibrator, in Proceedings of the 2015 ICU International Congress on Ultrasonics, 2015, pp. 59–62, ed. by N.F. Declercq
50.
Zurück zum Zitat M. Asier, S.A.Seah, et al., Holographic acoustic elements for manipulation of levitated objects Nature Communications, 6 (2015) M. Asier, S.A.Seah, et al., Holographic acoustic elements for manipulation of levitated objects Nature Communications, 6 (2015)
51.
Zurück zum Zitat D. Zang, J. Li et al., Switchable opening and closing of a liquid marble via ultrasonic levitation. Langmuir 31(42), 11502–11507 (2015) D. Zang, J. Li et al., Switchable opening and closing of a liquid marble via ultrasonic levitation. Langmuir 31(42), 11502–11507 (2015)
52.
Zurück zum Zitat E.T. Chainani, W.H. Choi et al., Mixing in colliding, ultrasonically levitated drops. Anal. Chem. 86(4), 2229–2237 (2014)CrossRef E.T. Chainani, W.H. Choi et al., Mixing in colliding, ultrasonically levitated drops. Anal. Chem. 86(4), 2229–2237 (2014)CrossRef
53.
Zurück zum Zitat R. Nakamura, Y. Mizuno, et al., Demonstration of noncontact ultrasonic mixing of droplet. Japanese J. Appl. Phys. 52(7), 07HE02 (2013) R. Nakamura, Y. Mizuno, et al., Demonstration of noncontact ultrasonic mixing of droplet. Japanese J. Appl. Phys. 52(7), 07HE02 (2013)
54.
Zurück zum Zitat Z.N. Pierre, C.R. Field et al., Sample handling and chemical kinetics in an acoustically levitated drop microreactor. Anal. Chem. 81(20), 8496–8502 (2009)CrossRef Z.N. Pierre, C.R. Field et al., Sample handling and chemical kinetics in an acoustically levitated drop microreactor. Anal. Chem. 81(20), 8496–8502 (2009)CrossRef
55.
Zurück zum Zitat Z. Chen, D. Zang et al., Liquid marble coalescence and triggered microreaction driven by acoustic levitation. Langmuir 33(25), 6232–6239 (2017)CrossRef Z. Chen, D. Zang et al., Liquid marble coalescence and triggered microreaction driven by acoustic levitation. Langmuir 33(25), 6232–6239 (2017)CrossRef
56.
Zurück zum Zitat A. Watanabe, K. Hasegawa, et al., Contactless fluid manipulation in air: Sroplet coalescence and active mixing by acoustic levitation. 8(1), 10221 (2018) A. Watanabe, K. Hasegawa, et al., Contactless fluid manipulation in air: Sroplet coalescence and active mixing by acoustic levitation. 8(1), 10221 (2018)
Metadaten
Titel
Dynamics of Acoustically Levitated Drops
verfasst von
Zehui Zhang
Kangqi Liu
Duyang Zang
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9065-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.