Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2020

01.02.2020 | Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Eclectic and economical synthesis, characterization of Li–Ba–Zn magnetic nanostructured mixed ferrites

verfasst von: Harpreet Kaur, Carlos Alberta Huerta-Aguilar, Jashanpreet Singh

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Augmentation in magnetic and dielectric properties of Li0.25Ba0.5-XZnXFe2.25O4 (where X = 0–0.5) suggest the effectiveness of barium doped in lower concentrations in lithium–zinc nanoferrites synthesized by solution combustion route. Different instrumental techniques have been employed to characterize their phase, size, and structural properties. X-ray diffraction analysis indicated that lithium–barium–zinc nanoferrites crystallize in the cubic spinel single phase with lattice parameter ~8.60 Å, while high-resolution transmission electron microscopic studies demonstrated the formation of cubic, uniformity, and crystalline nanoferrites. Mössbauer and magnetic parameters revealed the stability and magnetic character of doped ions with the phase transition from ferrimagnetism to superparamagnetism. Dielectric parameters as a function of frequency (100 Hz–5 MHz) and temperature (~500 °C) have also been studied which exhibited low dielectric losses as compared with other ferrite materials synthesized by conventional methods. This low loss values make these materials to be applicable in nanoelectronic devices and new generation wireless communication systems that can even work at high frequencies with derived high-temperature increments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Coey, JMD (2009) Magnetic materials. Magnetism and magnetic materials, vol. 413. 1st edn, Cambridge University Press, NY, p 423 Coey, JMD (2009) Magnetic materials. Magnetism and magnetic materials, vol. 413. 1st edn, Cambridge University Press, NY, p 423
2.
Zurück zum Zitat MacDaniel, T Randall, V (1997) Magneto-optical thin film recording materials in practice. Handbook of magneto-optical data recording: materials, subsystems, techniques. 1st edn, Noyes Publications, Westwood MacDaniel, T Randall, V (1997) Magneto-optical thin film recording materials in practice. Handbook of magneto-optical data recording: materials, subsystems, techniques. 1st edn, Noyes Publications, Westwood
3.
Zurück zum Zitat Zhu K, Ju Y, Xu J, Yang Z, Gao S, Hou Y (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51:404–413 Zhu K, Ju Y, Xu J, Yang Z, Gao S, Hou Y (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51:404–413
4.
Zurück zum Zitat Spaldin, NA (2010) Ferrimagnetism. Magnetic material: fundamentals and applications. 2nd edn, Cambridge University Press, New York Spaldin, NA (2010) Ferrimagnetism. Magnetic material: fundamentals and applications. 2nd edn, Cambridge University Press, New York
5.
Zurück zum Zitat Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Ed 46:1222–1244 Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Ed 46:1222–1244
6.
Zurück zum Zitat Jamon D, Donatini F, Siblini A, Royer F, Perzynski R, Cabuil, Neveu VS (2009) Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements. J Magn Magn Mater 321:1148–1154 Jamon D, Donatini F, Siblini A, Royer F, Perzynski R, Cabuil, Neveu VS (2009) Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements. J Magn Magn Mater 321:1148–1154
7.
Zurück zum Zitat Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58 Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58
8.
Zurück zum Zitat Sugimoto M (1999) The past, present and future of ferrites. J Am Ceram Soc 82:269–280 Sugimoto M (1999) The past, present and future of ferrites. J Am Ceram Soc 82:269–280
9.
Zurück zum Zitat Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837 Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837
10.
Zurück zum Zitat Goya GF, Grazú V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16 Goya GF, Grazú V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16
11.
Zurück zum Zitat Jeun M, Moon SJ, Kobayashi H, Shin HY, Tomitaka A, Kim YJ, Takemura Y, Paek SH, Park KH, Chung KW, Bae S (2010) Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic MnxZn1−xFe2O4 nanoparticles for hyperthermia. Appl Phys Lett 96:202511–202513 Jeun M, Moon SJ, Kobayashi H, Shin HY, Tomitaka A, Kim YJ, Takemura Y, Paek SH, Park KH, Chung KW, Bae S (2010) Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic MnxZn1−xFe2O4 nanoparticles for hyperthermia. Appl Phys Lett 96:202511–202513
12.
Zurück zum Zitat Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Greneche JM, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem Mater 22:5420–5429 Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Greneche JM, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem Mater 22:5420–5429
13.
Zurück zum Zitat Valenzuela, R (1994) Magnetic ceramics. 1st edn, Cambridge University Press, New York, p 3–23 Valenzuela, R (1994) Magnetic ceramics. 1st edn, Cambridge University Press, New York, p 3–23
14.
Zurück zum Zitat Sutka A, Menziskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141 Sutka A, Menziskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141
15.
Zurück zum Zitat Ghone DM, Mathe VL, Patankar KK, Kaushik SD (2018) Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J Alloy Compds 739:52–61 Ghone DM, Mathe VL, Patankar KK, Kaushik SD (2018) Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J Alloy Compds 739:52–61
16.
Zurück zum Zitat Coppola P, Da Silva FG, Gomide G, Paula FL, Campos AF, Perzynski R, Kern C, Depeyrot J, Aquino R (2016) Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J Nanopart Res 18:138–152 Coppola P, Da Silva FG, Gomide G, Paula FL, Campos AF, Perzynski R, Kern C, Depeyrot J, Aquino R (2016) Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J Nanopart Res 18:138–152
17.
Zurück zum Zitat Amirthavalli C, Thomas JM, Nagaraj K, Prince AA (2018) Facile room temperature CTAB-assisted synthesis of mesoporous nano-cobalt ferrites for enhanced magnetic behavior. Mater Res Bull 100:289–294 Amirthavalli C, Thomas JM, Nagaraj K, Prince AA (2018) Facile room temperature CTAB-assisted synthesis of mesoporous nano-cobalt ferrites for enhanced magnetic behavior. Mater Res Bull 100:289–294
18.
Zurück zum Zitat Randhawa BS, Singh J, Kaur H, Kaur M (2010) Preparation of nickel ferrite from thermolysis of nickel tris(malonato)ferrate(III) heptahydrate precursor. Ceram Int 36:1993–1996 Randhawa BS, Singh J, Kaur H, Kaur M (2010) Preparation of nickel ferrite from thermolysis of nickel tris(malonato)ferrate(III) heptahydrate precursor. Ceram Int 36:1993–1996
19.
Zurück zum Zitat Gharibshahian M, Nourbakhsh MS, Mirzaee O (2018) Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn & Cd doped CoFe2O4 nanoparticles via Pechini sol–gel method. J Sol-gel Sci Tech 85:684–692 Gharibshahian M, Nourbakhsh MS, Mirzaee O (2018) Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn & Cd doped CoFe2O4 nanoparticles via Pechini sol–gel method. J Sol-gel Sci Tech 85:684–692
20.
Zurück zum Zitat Mouallem-Bahout M, Bertrand S, Pena O (2005) Synthesis and characterization of ZnxNi1–xFe2O4 spinels prepared by citrate precursor. J Solid State Chem 178:1080–1086 Mouallem-Bahout M, Bertrand S, Pena O (2005) Synthesis and characterization of ZnxNi1–xFe2O4 spinels prepared by citrate precursor. J Solid State Chem 178:1080–1086
21.
Zurück zum Zitat Manzoor A, Khan MA, Shahid M, Warsi MF (2017) Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J Alloy Compd 710:547–556 Manzoor A, Khan MA, Shahid M, Warsi MF (2017) Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J Alloy Compd 710:547–556
22.
Zurück zum Zitat Mazen SA, Abu-Elsaad NI, Nawara AS (2017) Studies on micro-structure and dc conductivity of polycrystalline Li0.5+0.5xSixFe2.5−1.5xO4 spinel ferrites. Power Technol 317:339–347 Mazen SA, Abu-Elsaad NI, Nawara AS (2017) Studies on micro-structure and dc conductivity of polycrystalline Li0.5+0.5xSixFe2.5−1.5xO4 spinel ferrites. Power Technol 317:339–347
23.
Zurück zum Zitat Jiang X, Wang W, Yu Z, Sun K, Lan Z, Zhang X, Harris VG (2017) Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped Li-Zn ferrite. AIP Adv 7:056106–056110 Jiang X, Wang W, Yu Z, Sun K, Lan Z, Zhang X, Harris VG (2017) Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped Li-Zn ferrite. AIP Adv 7:056106–056110
24.
Zurück zum Zitat Ghazanfar H, Khan MA, Anis-ur-Rehman M (2017) Temperature dependent dielectric studies on zinc doped lithium nanoferrites. J Supercond Nov Magn 30:813–817 Ghazanfar H, Khan MA, Anis-ur-Rehman M (2017) Temperature dependent dielectric studies on zinc doped lithium nanoferrites. J Supercond Nov Magn 30:813–817
25.
Zurück zum Zitat Anis-ur-Rehman M, Saqib M, Abdullah A (2016) Temperature dependent electrical properties of co-precipitated magnesium doped lithium nanoferrites. J Mater Sci Mater Elect 27:5517–5525 Anis-ur-Rehman M, Saqib M, Abdullah A (2016) Temperature dependent electrical properties of co-precipitated magnesium doped lithium nanoferrites. J Mater Sci Mater Elect 27:5517–5525
26.
Zurück zum Zitat Surzhikov AP, Lysenko EN, Vlasov VA, Malyshev AV, Korobeynikov MV, Mikhailenko MA (2016) Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites. IOP Conf Ser Mater Sci Eng 168(1–4):012090 Surzhikov AP, Lysenko EN, Vlasov VA, Malyshev AV, Korobeynikov MV, Mikhailenko MA (2016) Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites. IOP Conf Ser Mater Sci Eng 168(1–4):012090
27.
Zurück zum Zitat Surzhikov AP, Lysenko EN, Vlasov VA, Malyshev AV, Korobeynikov MV, Mikhailenko MA (2016) Influence of reagents mixture density on theradiation-thermal synthesis of lithium-zinc ferrites IOP Conf Ser Mater Sci Eng 168(1–4):012093 Surzhikov AP, Lysenko EN, Vlasov VA, Malyshev AV, Korobeynikov MV, Mikhailenko MA (2016) Influence of reagents mixture density on theradiation-thermal synthesis of lithium-zinc ferrites IOP Conf Ser Mater Sci Eng 168(1–4):012093
28.
Zurück zum Zitat Borhan N, Gheisari K, Shoushtari MZ (2016) Dielectric properties of nanocrystalline Zn-doped lithium ferrites synthesized by microwave-induced glycine–nitrate process. J Supercond Nov Magn 29:145–151 Borhan N, Gheisari K, Shoushtari MZ (2016) Dielectric properties of nanocrystalline Zn-doped lithium ferrites synthesized by microwave-induced glycine–nitrate process. J Supercond Nov Magn 29:145–151
29.
Zurück zum Zitat Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586 Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586
30.
Zurück zum Zitat Costa AC, Leite AM, Ferreira HS, Kiminami RH, Cava S, Gama L (2008) Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. J Eur Ceram Soc 28:2033–2037 Costa AC, Leite AM, Ferreira HS, Kiminami RH, Cava S, Gama L (2008) Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. J Eur Ceram Soc 28:2033–2037
31.
Zurück zum Zitat Nakazawa T, Suzuki D, Sakuma H, Furuta N (2014) Comparison of signal enhancement by co-existing carbon and by co-existing bromine in inductively coupled plasma mass spectrometry. J Anal Spectrom 29:1299–1305 Nakazawa T, Suzuki D, Sakuma H, Furuta N (2014) Comparison of signal enhancement by co-existing carbon and by co-existing bromine in inductively coupled plasma mass spectrometry. J Anal Spectrom 29:1299–1305
32.
Zurück zum Zitat Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982 Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982
33.
Zurück zum Zitat Saxena NK, Kumar N, Pourush PKS (2010) Microstrip rectangular patch antenna printed on LiTi ferrite with perpendicular DC magnetic biasing, J. Am Sci 6:46–51 Saxena NK, Kumar N, Pourush PKS (2010) Microstrip rectangular patch antenna printed on LiTi ferrite with perpendicular DC magnetic biasing, J. Am Sci 6:46–51
34.
Zurück zum Zitat Wang L, Chen B, Ma J, Cui G, Chen L (2018) Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev 47:6505–6602 Wang L, Chen B, Ma J, Cui G, Chen L (2018) Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev 47:6505–6602
35.
Zurück zum Zitat Batra P, Gaba R, Issar U, Kakkar R(2013) Structures and stabilities of alkaline earth metal oxidenanoclusters: a DFT study J J Theor Chem 2013:1–14 Batra P, Gaba R, Issar U, Kakkar R(2013) Structures and stabilities of alkaline earth metal oxidenanoclusters: a DFT study J J Theor Chem 2013:1–14
36.
Zurück zum Zitat Sun C, Sun K (2007) Preparation and characterization of magnesium-substituted LiZn ferrites by sol-gel method. Phys B 391:335–338 Sun C, Sun K (2007) Preparation and characterization of magnesium-substituted LiZn ferrites by sol-gel method. Phys B 391:335–338
37.
Zurück zum Zitat Rathod V, Anupama AV, Jali VM, Hiremath VA, Sahoo B (2017) Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders. Ceram Int 43:14431–14440 Rathod V, Anupama AV, Jali VM, Hiremath VA, Sahoo B (2017) Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders. Ceram Int 43:14431–14440
38.
Zurück zum Zitat Williamson GK, Hall WH (1953) X-ray broadening from filed aluminium and wolfram. Acta Met 1:22–31 Williamson GK, Hall WH (1953) X-ray broadening from filed aluminium and wolfram. Acta Met 1:22–31
39.
Zurück zum Zitat Kalyana Raju M, Ratna Raju M, Rajasekhar Babu K, Patnaik JRG, Samatha K (2015) Structural observations, density and porosity studies of Cu substituted Ni-Zn ferrite through standard ceramic technique. Chem Sci Trans 4:325–330 Kalyana Raju M, Ratna Raju M, Rajasekhar Babu K, Patnaik JRG, Samatha K (2015) Structural observations, density and porosity studies of Cu substituted Ni-Zn ferrite through standard ceramic technique. Chem Sci Trans 4:325–330
40.
Zurück zum Zitat Moinuddin MK, Ramana Murthy S (1993) Elastic behavior of Mn-Zn ferrites. J Alloy Compd 194:105–107 Moinuddin MK, Ramana Murthy S (1993) Elastic behavior of Mn-Zn ferrites. J Alloy Compd 194:105–107
41.
Zurück zum Zitat Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z für Phys 5:17–26 Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z für Phys 5:17–26
42.
Zurück zum Zitat Wang L, Wang X, Luo J, Wanjala BN, Wang C, Chernova NA, Engelhard MH, Liu Y, Bae IT, Zhong CJ (2010) Core−shell-structured magnetic ternary nanocubes. J Am Chem Soc 132(50):17686–17689 Wang L, Wang X, Luo J, Wanjala BN, Wang C, Chernova NA, Engelhard MH, Liu Y, Bae IT, Zhong CJ (2010) Core−shell-structured magnetic ternary nanocubes. J Am Chem Soc 132(50):17686–17689
43.
Zurück zum Zitat Harris VG (2012) Modern microwave ferrites. IEEE Trans Magn 48:1075–1104 Harris VG (2012) Modern microwave ferrites. IEEE Trans Magn 48:1075–1104
44.
Zurück zum Zitat Soreto S, Graça M, Valente M, Costa L (2017) Lithium ferrite: synthesis, structural characterization and electromagnetic properties. IntechOpen, London Soreto S, Graça M, Valente M, Costa L (2017) Lithium ferrite: synthesis, structural characterization and electromagnetic properties. IntechOpen, London
45.
Zurück zum Zitat Datt G, Sen M, Raja M, Abhyankar A (2016) Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale 8:5200–5213 Datt G, Sen M, Raja M, Abhyankar A (2016) Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale 8:5200–5213
46.
Zurück zum Zitat Batoo KM, Salah D, Kumar G, Kumar A, Singh M, Abd El-sadek M, Mir FA, Imran A, Jameel DA (2016) Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 411:91–97 Batoo KM, Salah D, Kumar G, Kumar A, Singh M, Abd El-sadek M, Mir FA, Imran A, Jameel DA (2016) Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 411:91–97
47.
Zurück zum Zitat Shuro IH, Kuo H, Sasaki T, Hono K, Todaka Y, Umemoto M (2013) G-phase precipitation in austenitic stainless steel deformed by high pressure torsion. Mater Sci Eng A 552:194–198 Shuro IH, Kuo H, Sasaki T, Hono K, Todaka Y, Umemoto M (2013) G-phase precipitation in austenitic stainless steel deformed by high pressure torsion. Mater Sci Eng A 552:194–198
48.
Zurück zum Zitat Rezlescu N, Rezlescu E, Doroftei C, Popa PD (2004) Li and Ba ferrite nanoparticles prepared by self combustion. Phys Status Solidi (C) 1:3640–3643 Rezlescu N, Rezlescu E, Doroftei C, Popa PD (2004) Li and Ba ferrite nanoparticles prepared by self combustion. Phys Status Solidi (C) 1:3640–3643
49.
Zurück zum Zitat Abdellatif MH, El-Komy GM, Azab AA, Salerno M (2018) Crystal field distortion of La3+ ion-doped Mn-Cr ferrite. J Magn Magn Mater 447:15–20 Abdellatif MH, El-Komy GM, Azab AA, Salerno M (2018) Crystal field distortion of La3+ ion-doped Mn-Cr ferrite. J Magn Magn Mater 447:15–20
50.
Zurück zum Zitat Mameli V, Musinu A, Ardu A, Ennas G, Peddis D, Niznansky D, Sangregorio C, Innocenti C, Thanh NT, Cannas C (2016) Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8:10124–10137 Mameli V, Musinu A, Ardu A, Ennas G, Peddis D, Niznansky D, Sangregorio C, Innocenti C, Thanh NT, Cannas C (2016) Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8:10124–10137
51.
Zurück zum Zitat Neel LM (1948) Magnetic properties of ferrites; ferrimagnetism and antiferromagnetism. Ann de Phys 12:137–198 Neel LM (1948) Magnetic properties of ferrites; ferrimagnetism and antiferromagnetism. Ann de Phys 12:137–198
52.
Zurück zum Zitat Nowik I (1969) Saturation moments of mixed ferrites: a simple theory. J Appl Phys 40:872 Nowik I (1969) Saturation moments of mixed ferrites: a simple theory. J Appl Phys 40:872
53.
Zurück zum Zitat Verma S, Chand J, Sarveena, Singh M (2015) Study of Mӧssbauer and magnetic properties of Al3+ ions doped superparamagnetic nano ferrites. AIP Conf Proc 1665(1–3):130008 Verma S, Chand J, Sarveena, Singh M (2015) Study of Mӧssbauer and magnetic properties of Al3+ ions doped superparamagnetic nano ferrites. AIP Conf Proc 1665(1–3):130008
54.
Zurück zum Zitat Babbar VK, Chandel JS (1995) Effect of Al+-substitution on the electrical and magnetic properties of Nil.05Sn0.05Fel.904 ferrites. Bull Mater Sci 18:997–1005 Babbar VK, Chandel JS (1995) Effect of Al+-substitution on the electrical and magnetic properties of Nil.05Sn0.05Fel.904 ferrites. Bull Mater Sci 18:997–1005
55.
Zurück zum Zitat Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296 Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296
56.
Zurück zum Zitat Dawoud H, Mosa ZA, Shaat S (2019) Curie points and direct current electrical conductivity for inverse Li-spinel ferrite replaced by Zn2+ Ion. Am J Mater Sci Appl 7:13–18 Dawoud H, Mosa ZA, Shaat S (2019) Curie points and direct current electrical conductivity for inverse Li-spinel ferrite replaced by Zn2+ Ion. Am J Mater Sci Appl 7:13–18
57.
Zurück zum Zitat Gawas SG, Meena SS, Bhatt P, Verenkar, Verenkar VMS (2018) Nanoscale driven structural changes and associated superparamagnetism in magnetically diluted Ni-Zn ferrites. Mater Chem Front 2:300–312 Gawas SG, Meena SS, Bhatt P, Verenkar, Verenkar VMS (2018) Nanoscale driven structural changes and associated superparamagnetism in magnetically diluted Ni-Zn ferrites. Mater Chem Front 2:300–312
58.
Zurück zum Zitat Yafet Y, Kittel C (1952) Antiferromegnetic arrangements in ferrites. Phys Rev 87:290–294 Yafet Y, Kittel C (1952) Antiferromegnetic arrangements in ferrites. Phys Rev 87:290–294
59.
Zurück zum Zitat Wan DF, Ma XL (1994) The physics of magnetism. UESTC Press, Chengdu Wan DF, Ma XL (1994) The physics of magnetism. UESTC Press, Chengdu
60.
Zurück zum Zitat De Montferrand C, Lalatonne Y, Bonnin D, Lièvre N, Lecouvey M, Monod P, Russier V, Motte L (2012) Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles. Small 8:1945–1956 De Montferrand C, Lalatonne Y, Bonnin D, Lièvre N, Lecouvey M, Monod P, Russier V, Motte L (2012) Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles. Small 8:1945–1956
61.
Zurück zum Zitat Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518 Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518
62.
Zurück zum Zitat Iwauchi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn J Appl Phys 10:1520–1528 Iwauchi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn J Appl Phys 10:1520–1528
63.
Zurück zum Zitat Dawoud H, Mosa ZA, Shaat S (2017) Synthesis and AC properties of mixed Li-Zn ferrites. Int J Curr Res 9:59176–59179 Dawoud H, Mosa ZA, Shaat S (2017) Synthesis and AC properties of mixed Li-Zn ferrites. Int J Curr Res 9:59176–59179
64.
Zurück zum Zitat Van der Zaag PJ, Van der Valk PJ, Rekveldt MT (1996) A domain size effect in magnetic hysteresis of Ni-Zn ferrites. Appl Phys Lett 69:2927–2929 Van der Zaag PJ, Van der Valk PJ, Rekveldt MT (1996) A domain size effect in magnetic hysteresis of Ni-Zn ferrites. Appl Phys Lett 69:2927–2929
65.
Zurück zum Zitat Hench LL, West JK (1990) Principles of electronics ceramics. Wiley, New York, p 189 Hench LL, West JK (1990) Principles of electronics ceramics. Wiley, New York, p 189
66.
Zurück zum Zitat Manikandan V, Vanitha A, Kumar ER, Chandrasekaran J (2017) Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 nanoparticles. J Magn Magn Mater 423:250–255 Manikandan V, Vanitha A, Kumar ER, Chandrasekaran J (2017) Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 nanoparticles. J Magn Magn Mater 423:250–255
67.
Zurück zum Zitat Hench LL, West JK (1990) Principles of electronics ceramics. Wiley, New York, p 209 Hench LL, West JK (1990) Principles of electronics ceramics. Wiley, New York, p 209
68.
Zurück zum Zitat Maxwell JC (1873) Electricity and magnetism, vol 1. Oxford University Press, Oxford Maxwell JC (1873) Electricity and magnetism, vol 1. Oxford University Press, Oxford
69.
Zurück zum Zitat Wagner KW (1913) On the theory of imperfect dielectrics. Ann Phys (Leipz) 40:817–855 Wagner KW (1913) On the theory of imperfect dielectrics. Ann Phys (Leipz) 40:817–855
70.
Zurück zum Zitat Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–124 Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–124
71.
Zurück zum Zitat Pawar RA, Desai SS, Patange SM, Jadhav SS, Jadhav KM (2017) Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Phys B 510:74–79 Pawar RA, Desai SS, Patange SM, Jadhav SS, Jadhav KM (2017) Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Phys B 510:74–79
72.
Zurück zum Zitat Randhawa BS, Singh J (2013) Physico-chemical studies on synthesis, characterization, and magnetic properties of Li–Ca–Zn nanoferrites. J Nanopart Res 15:1351–1361 Randhawa BS, Singh J (2013) Physico-chemical studies on synthesis, characterization, and magnetic properties of Li–Ca–Zn nanoferrites. J Nanopart Res 15:1351–1361
73.
Zurück zum Zitat Soibam I, Phanjoubam S, Sharma HB, Sarma HNK, Laishram R, Prakash C (2008) Effect of Cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Commun 148:399–402 Soibam I, Phanjoubam S, Sharma HB, Sarma HNK, Laishram R, Prakash C (2008) Effect of Cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Commun 148:399–402
74.
Zurück zum Zitat Li LZ, Zhong XX, Wang R, Tu XQ, He L, Guo RD, Xu ZY (2017) Structural, magnetic and electrical properties in Al-substituted Ni-Zn-Co ferrite prepared via the sol-gel auto combustion method for LTCC technology. RSC Adv 7:39198–39203 Li LZ, Zhong XX, Wang R, Tu XQ, He L, Guo RD, Xu ZY (2017) Structural, magnetic and electrical properties in Al-substituted Ni-Zn-Co ferrite prepared via the sol-gel auto combustion method for LTCC technology. RSC Adv 7:39198–39203
75.
Zurück zum Zitat Kolekar YD, Sanchez LJ, Ramana CV (2014) Dielectric relaxation and alternating current conductivity in manganese substituted cobalt ferrite. J Appl Phys 115(1–11):144106 Kolekar YD, Sanchez LJ, Ramana CV (2014) Dielectric relaxation and alternating current conductivity in manganese substituted cobalt ferrite. J Appl Phys 115(1–11):144106
76.
Zurück zum Zitat Verma A, Thakur OP, Prakash C, Goel TC, Mendiratta RG (2005) Temperature dependence of electrical properties of nickel-zinc ferrites processed by citrate-precursor technique. Mat Sci Eng B 116:1–6 Verma A, Thakur OP, Prakash C, Goel TC, Mendiratta RG (2005) Temperature dependence of electrical properties of nickel-zinc ferrites processed by citrate-precursor technique. Mat Sci Eng B 116:1–6
77.
Zurück zum Zitat Batoo KM, Kumar S, Lee CG (2009) Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr Appl Phys 9:1397–1406 Batoo KM, Kumar S, Lee CG (2009) Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr Appl Phys 9:1397–1406
78.
Zurück zum Zitat Mangalaraja RV, Manohar P, Gnanam FD, Awano M (2004) Electrical and magnetic properties of Ni0.8Zn0.2Fe2O4/silica composite prepared by sol-gel method. J Mater Sci 39:2037–2042 Mangalaraja RV, Manohar P, Gnanam FD, Awano M (2004) Electrical and magnetic properties of Ni0.8Zn0.2Fe2O4/silica composite prepared by sol-gel method. J Mater Sci 39:2037–2042
79.
Zurück zum Zitat Zheludev IS (2012) Physics of crystalline dielectrics, vol. 1 crystallography and spontaneous polarization. Springer Science & Business Media, New York Zheludev IS (2012) Physics of crystalline dielectrics, vol. 1 crystallography and spontaneous polarization. Springer Science & Business Media, New York
80.
Zurück zum Zitat Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58 Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58
81.
Zurück zum Zitat Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43:3940–3951 Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43:3940–3951
Metadaten
Titel
Eclectic and economical synthesis, characterization of Li–Ba–Zn magnetic nanostructured mixed ferrites
verfasst von
Harpreet Kaur
Carlos Alberta Huerta-Aguilar
Jashanpreet Singh
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2020
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-019-05191-0

Weitere Artikel der Ausgabe 2/2020

Journal of Sol-Gel Science and Technology 2/2020 Zur Ausgabe

Original Paper: Fundamentals of sol-gel and hybrid materials processing

Use of a pressurized water treatment to prevent cracking of internal gelation sol-gel microspheres

Original Paper: Fundamentals of sol–gel and hybrid materials processing

One-step synthesis of pure γ-FeNi alloy by reaсtive sol–gel combustion route: mechanism and properties

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

The preparation of graphene foam by one-step reduction and air-drying for oil–water separation

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Optimized silica-based hybrid coatings for the protection of aluminum against chloride-rich environment

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.