Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 10/2016

06.05.2016 | LIFE CYCLE SUSTAINABILITY ASSESSMENT

Eco-efficiency indicator framework implemented in the metallurgical industry: part 1—a comprehensive view and benchmark

verfasst von: Ida Rönnlund, Markus Reuter, Susanna Horn, Jatta Aho, Maija Aho, Minna Päällysaho, Laura Ylimäki, Tiina Pursula

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The purpose of this work was to develop an indicator framework for the environmental sustainability benchmarking of products produced by the metallurgical industry. Sustainability differentiation has become an important issue for companies throughout the value chain. Differentiation is sometimes not attainable, due to the use of average data, lack of comparative data, certain issues being overshadowed by others, and a very narrow palette of indicators dominating the current sustainability assessments. There is a need for detailed and credible analyses, which show the current status and point out where improvements can be made. The indicator framework is developed to give a comprehensive picture of eco-efficiency, to provide methods that enable relevant comparisons as well as the tools for communicating the results. In this way, the methodology presented in this study aims to make differentiation easier and thus aid companies in driving the development toward more sustainable solutions.

Methods

The framework is based on the existing indicator framework Gaia Biorefiner, which is primarily intended for bio-based products. In this work, the framework was further developed for application in the metallurgical industry. The indicator framework is built by first looking at the issues, which are critical to the environment and global challenges seen today and which the activities of the metallurgical industry may have an impact on. Based on these issues, suitable indicators are chosen if they exist and built if they do not. The idea is that all indicators in a group form a whole, showing areas of innovation while refraining from aggregating and weighting, which often compromise a comprehensive and objective view. Both qualitative and quantitative indicators are included. The indicators are constructed following the criteria set by the EU and OECD for building indicators. Each indicator further has a benchmark. The rules for building the benchmark are connected to the indicators. Suitable data sources and criteria for the benchmark and the indicators are gathered from literature, publicly available databases, and commercial LCA software. The use of simulation tools for attaining more reliable data is also studied.

Results and discussion

The result is a visual framework consisting of ten indicator groups with one to five indicators each, totaling up to 31 indicators. These are visualized in a sustainability indicator “flower.” The flower can be further opened up to study each indicator and the reasons behind the results. The sustainability benchmark follows a methodology that is based on utilization of baseline data and sustainability criteria or limits. A simulation approach was included in the methodology to address the problem with data scarcity and data reliability. The status of the environment, current production technologies, location-specific issues, and process-specific issues all affect the result, and the aim of finding relevant comparisons that will support sustainability differentiation is answered by a scalable scoping system.

Conclusions

A new framework and its concise visualization has been built for assessing the eco-efficiency of products from the metallurgical industry, in a way that aims to answer the needs of the industry. Since there is a baseline, against which each indicator can be benchmarked, a sustainability indicator “flower” can be derived, one of the key innovations of this methodology. This approach goes beyond the usual quantification, as it is also scalable and linked to technology and its fundamental parameters. In part 2, a case study “A case study from the copper industry” tests and illustrates the methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The indicator goes beyond the blue water footprint, which only considers the volume of surface and groundwater evaporated or incorporated into a product. The blue water footprint is the amount of water withdrawn from groundwater or surface water that does not return to the source from which it was withdrawn.
 
Literatur
Zurück zum Zitat Azapagic A (2004) Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod 12:639–662CrossRef Azapagic A (2004) Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod 12:639–662CrossRef
Zurück zum Zitat Bringezu S, Schütz H, Moll S (2003) Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J Ind Ecol 7(2):43–64CrossRef Bringezu S, Schütz H, Moll S (2003) Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J Ind Ecol 7(2):43–64CrossRef
Zurück zum Zitat Bukhard (2009) Landscapes’ capacities to provide ecosystem services—a concept for land-cover based assessments. Landsc Online 15:1–22 Bukhard (2009) Landscapes’ capacities to provide ecosystem services—a concept for land-cover based assessments. Landsc Online 15:1–22
Zurück zum Zitat Bukhard (2014) Ecosystem service potentials, flows and demands—concepts for spatial localisation, indication and quantification. Landsc Online 34:1–32CrossRef Bukhard (2014) Ecosystem service potentials, flows and demands—concepts for spatial localisation, indication and quantification. Landsc Online 34:1–32CrossRef
Zurück zum Zitat Derwall J, Guenster N, Bauer R, Koedijk K (2005) The eco-efficiency premium puzzle. Financ Analysts J 61:2 Derwall J, Guenster N, Bauer R, Koedijk K (2005) The eco-efficiency premium puzzle. Financ Analysts J 61:2
Zurück zum Zitat DeSimone LD, Popoff F, World Business Council for Sustainable Development (1997) Eco-efficiency: the business link to sustainable development. MIT, Cambridge DeSimone LD, Popoff F, World Business Council for Sustainable Development (1997) Eco-efficiency: the business link to sustainable development. MIT, Cambridge
Zurück zum Zitat European Commission (2008) Waste framework directive (Directive 2008/98/EC) European Commission (2008) Waste framework directive (Directive 2008/98/EC)
Zurück zum Zitat European Commission (2009) The fuel quality directive. (Directive 2009/30/EC) European Commission (2009) The fuel quality directive. (Directive 2009/30/EC)
Zurück zum Zitat European Commission (2009) The renewable energy directive. (Directive 2009/28/EC) European Commission (2009) The renewable energy directive. (Directive 2009/28/EC)
Zurück zum Zitat European Commission (2011) COM(2011) 21 communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A resource-efficient Europe—flagship initiative under the Europe 2020 strategy European Commission (2011) COM(2011) 21 communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A resource-efficient Europe—flagship initiative under the Europe 2020 strategy
Zurück zum Zitat European Commission (2014) Best available techniques (BAT) reference document for the non-ferrous metals industries, draft, Joint Research Centre: Institute for Prospective Technological Studies, Sustainable Production and Consumption Unit, European IPPC Bureau European Commission (2014) Best available techniques (BAT) reference document for the non-ferrous metals industries, draft, Joint Research Centre: Institute for Prospective Technological Studies, Sustainable Production and Consumption Unit, European IPPC Bureau
Zurück zum Zitat Fizal T (2007) An environmental assessment method for cleaner production technologies. J Clean Prod 15:914–919CrossRef Fizal T (2007) An environmental assessment method for cleaner production technologies. J Clean Prod 15:914–919CrossRef
Zurück zum Zitat Fussler C, James P (1996) Driving eco-innovation: a breakthrough discipline for innovation and sustainability. Pitman, London Fussler C, James P (1996) Driving eco-innovation: a breakthrough discipline for innovation and sustainability. Pitman, London
Zurück zum Zitat Goedkoop M, Spriensma R (2004) The eco-indicator 99—a damage oriented method for life cycle assessment, methodology report, PRé Consultants Goedkoop M, Spriensma R (2004) The eco-indicator 99—a damage oriented method for life cycle assessment, methodology report, PRé Consultants
Zurück zum Zitat Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2013) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, first edition, Report I: Characterisation. s.l.: RIVM Report Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2013) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, first edition, Report I: Characterisation. s.l.: RIVM Report
Zurück zum Zitat Huysman S, Sala S, Mancini L, Ardente F, Alvarenga RAF, De Meester S, Mathieux F, Dewulf J (2015) Toward a systematized framework for resource efficiency indicators. Indic, Resour, Conserv Recycl 95:68–76CrossRef Huysman S, Sala S, Mancini L, Ardente F, Alvarenga RAF, De Meester S, Mathieux F, Dewulf J (2015) Toward a systematized framework for resource efficiency indicators. Indic, Resour, Conserv Recycl 95:68–76CrossRef
Zurück zum Zitat IChemE (2002) The sustainability metrics. The Institution of Chemical Engineers, Rugby IChemE (2002) The sustainability metrics. The Institution of Chemical Engineers, Rugby
Zurück zum Zitat IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535 pp IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535 pp
Zurück zum Zitat ISO (International Standards Organisation) (2006) ISO14044: environmental management—life cycle assessment—requirements and guidelines ISO (International Standards Organisation) (2006) ISO14044: environmental management—life cycle assessment—requirements and guidelines
Zurück zum Zitat ISO (International Standards Organisation) (2006) ISO14040: environmental management—life cycle assessment—principles and framework ISO (International Standards Organisation) (2006) ISO14040: environmental management—life cycle assessment—principles and framework
Zurück zum Zitat Khan F, Sadiq R, Veitch B (2004) Life Cycle iNdeX (LInX): a new indexing procedure for process and product design and decision-making. J Clean Prod 12:59–76CrossRef Khan F, Sadiq R, Veitch B (2004) Life Cycle iNdeX (LInX): a new indexing procedure for process and product design and decision-making. J Clean Prod 12:59–76CrossRef
Zurück zum Zitat Mancini L, Sala S, Recchioni M, Benini L, Goralczyk M, Pennington D (2015) Potential of life cycle assessment for supporting the management of critical raw materials. Int J Life Cycle Assess 20:100–116CrossRef Mancini L, Sala S, Recchioni M, Benini L, Goralczyk M, Pennington D (2015) Potential of life cycle assessment for supporting the management of critical raw materials. Int J Life Cycle Assess 20:100–116CrossRef
Zurück zum Zitat Nelen D, Manshoven S, Peeters JR, Vanegas P, D’Haese N, Vrancken K (2014) A multidimensional indicator set to assess the benefits of WEEE material recycling. J Clean Prod 83:305–316CrossRef Nelen D, Manshoven S, Peeters JR, Vanegas P, D’Haese N, Vrancken K (2014) A multidimensional indicator set to assess the benefits of WEEE material recycling. J Clean Prod 83:305–316CrossRef
Zurück zum Zitat OECD (Organisation for Economic Cooperation and Development) (2003) OECD environmental indicators development, measurement and use, reference paper OECD (Organisation for Economic Cooperation and Development) (2003) OECD environmental indicators development, measurement and use, reference paper
Zurück zum Zitat Remus R, Monsonet MAA, Roudier S, Delgado Sancho L (2013) Joint Research Council. best available techniques (BAT) reference document for iron and steel production, European Commission Remus R, Monsonet MAA, Roudier S, Delgado Sancho L (2013) Joint Research Council. best available techniques (BAT) reference document for iron and steel production, European Commission
Zurück zum Zitat Reuter MA (1998) The simulation of industrial ecosystems. Miner Eng 11(10):891–917CrossRef Reuter MA (1998) The simulation of industrial ecosystems. Miner Eng 11(10):891–917CrossRef
Zurück zum Zitat Reuter MA, van Schaik A, Gediga J (2015a) Simulation-based design for resource efficiency of metal production and recycling systems: cases—copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int J Life Cycle Assess 20(5):671–693CrossRef Reuter MA, van Schaik A, Gediga J (2015a) Simulation-based design for resource efficiency of metal production and recycling systems: cases—copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int J Life Cycle Assess 20(5):671–693CrossRef
Zurück zum Zitat Reuter MA, Matusewicz R, van Schaik A (2015b) Lead, zinc and their minor elements: enablers of a circular economy. World Metall-Erzmetall 68(3):132–146 Reuter MA, Matusewicz R, van Schaik A (2015b) Lead, zinc and their minor elements: enablers of a circular economy. World Metall-Erzmetall 68(3):132–146
Zurück zum Zitat Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20(1):113–120CrossRef Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20(1):113–120CrossRef
Zurück zum Zitat Sala S, Goralczyk M (2013) Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. Integr Environ Assess Manag 9(4):623–632CrossRef Sala S, Goralczyk M (2013) Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. Integr Environ Assess Manag 9(4):623–632CrossRef
Zurück zum Zitat Sala S, Farioli F, Zamagni A (2013) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: part 1. Int J Life Cycle Assess 18:1653–1672CrossRef Sala S, Farioli F, Zamagni A (2013) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: part 1. Int J Life Cycle Assess 18:1653–1672CrossRef
Zurück zum Zitat Saling P, Kicherer A, Dittrich-Krämer B, Wittlinger R, Zombik W, Schmidt I, Schrott W, Schmidt S (2002) Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess 7(4):203–218CrossRef Saling P, Kicherer A, Dittrich-Krämer B, Wittlinger R, Zombik W, Schmidt I, Schrott W, Schmidt S (2002) Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess 7(4):203–218CrossRef
Zurück zum Zitat Schlesinger ME, King M, Sole K, Davenport W (2011) Extractive metallurgy of copper, 5th edn. Elsevier, New York Schlesinger ME, King M, Sole K, Davenport W (2011) Extractive metallurgy of copper, 5th edn. Elsevier, New York
Zurück zum Zitat Schmidheiny S (1992) Changing course: a global business perspective on development and the environment. MIT Press Schmidheiny S (1992) Changing course: a global business perspective on development and the environment. MIT Press
Zurück zum Zitat Singh RK, Murty HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Ind 15:281–299CrossRef Singh RK, Murty HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Ind 15:281–299CrossRef
Zurück zum Zitat UNEP (United Nations Environmental Programme) (2008) Vital water graphics: an overview of the state of the world’s fresh and marine waters—2nd ed UNEP (United Nations Environmental Programme) (2008) Vital water graphics: an overview of the state of the world’s fresh and marine waters—2nd ed
Zurück zum Zitat Van Schaik A, Reuter MA (2014) Chapter 22: material-centric (aluminium and copper) and product-centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) recycling and DfR rules. In: Worrel E, Reuter MA (eds) Handbook of recycling. Elsevier, 307–378 Van Schaik A, Reuter MA (2014) Chapter 22: material-centric (aluminium and copper) and product-centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) recycling and DfR rules. In: Worrel E, Reuter MA (eds) Handbook of recycling. Elsevier, 307–378
Zurück zum Zitat Vieira MDM, Goedkoop MJ, Storm P, Huijbregts MAJ (2012) Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper. Environ Sci Technol 46:12772–12778CrossRef Vieira MDM, Goedkoop MJ, Storm P, Huijbregts MAJ (2012) Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper. Environ Sci Technol 46:12772–12778CrossRef
Zurück zum Zitat Worrel E, Reuter M (2014) Handbook of recycling, state-of-the-art for practitioners, analysts, and scientists. Elsevier, Waltham Worrel E, Reuter M (2014) Handbook of recycling, state-of-the-art for practitioners, analysts, and scientists. Elsevier, Waltham
Metadaten
Titel
Eco-efficiency indicator framework implemented in the metallurgical industry: part 1—a comprehensive view and benchmark
verfasst von
Ida Rönnlund
Markus Reuter
Susanna Horn
Jatta Aho
Maija Aho
Minna Päällysaho
Laura Ylimäki
Tiina Pursula
Publikationsdatum
06.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 10/2016
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-016-1122-9

Weitere Artikel der Ausgabe 10/2016

The International Journal of Life Cycle Assessment 10/2016 Zur Ausgabe