Skip to main content
Erschienen in: Steel in Translation 10/2019

01.10.2019

Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels

verfasst von: N. A. Popova, E. L. Nikonenko, A. V. Nikonenko, V. E. Gromov, O. A. Peregudov

Erschienen in: Steel in Translation | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using transmission electron microscopy (TEM), phase composition and fine texture changes in the ferrite-pearlitic steels 0.18C–1Cr–3Ni–1Mo–Fe, 0.3C–1Cr–1Mn–1Si–Fe and 0.34C–1Cr–1Ni–1Mo–Fe due to electrolytic plasma nitrocarburizing has been studied in thin foils. The procedure of electrolytic-plasma enhanced nitrocarburizing has been performed by steel surface saturation with nitrogen and carbon in an aqueous solution at a temperature of 800–860°C for 5 min. All the steels under investigation have been studied before and after the nitrocarburizing procedure. In the initial state, the steels were discovered to be composed of a pearlitic and ferritic grain mixture. The nitrocarburizing procedure leads to the formation of modified layers. Thus, the greater is the amount of pearlite before nitrocarburizing, the thicker is the modified layer. Nitrocarburizing results in significant qualitative changes in the phase state and the steel structure. In the modified layer surface area alongside the matrix, the particles of other phases such as carbides, nitrides and carbonitrides occur. As the distance from the surface of a nitrocarburized sample increases, the phases of set and volume decrease, whereas the only carbide phase—cementite—occurs at the end of modified layer in the case of all the steels. After nitrocarburizing, the matrix of all the steels represents tempered lath and lamellar martensite. In the nitrocarburized layer surface zone, the volume fractions of lath and lamellar martensite depend on the initial steel state: the greater is the amount of pearlite in steel, the less is the amount of lath martensite; then a greater amount of lamellar martensite is formed. Such a dependence is not observed in the nitrocarburized layer central zone, whereas the volume fractions of lath and lamellar martensite at the end of the layer are close to each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boonruang, Ch., Kumpangkeaw, W., Sopunna, K., Chomsaeng, N., and Narksitipan, S., Effect of carburizing via current heating technique on the near surface microstructure of AISI 1020 steel, Chiang Mai J. Sci., 2012, vol. 39, no. 2, pp. 254–262. Boonruang, Ch., Kumpangkeaw, W., Sopunna, K., Chomsaeng, N., and Narksitipan, S., Effect of carburizing via current heating technique on the near surface microstructure of AISI 1020 steel, Chiang Mai J. Sci., 2012, vol. 39, no. 2, pp. 254–262.
2.
Zurück zum Zitat Bondarev, A.A., Tyurin, Yu.N., Pogrebnyak, A.D., Kolisnichenko, O.V., and Duda, I.M., Effect of pulsed plasma and electron beam processing of surface of wear-resistant coatings based on Ni on their functional properties, Uprochnyayushchie Tekhnol. Pokrytiya, 2012, no. 4, pp. 16–20. Bondarev, A.A., Tyurin, Yu.N., Pogrebnyak, A.D., Kolisnichenko, O.V., and Duda, I.M., Effect of pulsed plasma and electron beam processing of surface of wear-resistant coatings based on Ni on their functional properties, Uprochnyayushchie Tekhnol. Pokrytiya, 2012, no. 4, pp. 16–20.
3.
Zurück zum Zitat Dudareva, N.Yu., Effect of microarc oxidation modes on properties of formed surface, Vestnik Ufimsk. Gos. Aviats. Tekh. Univ., 2013, vol. 17, no. 3, pp. 217–222. Dudareva, N.Yu., Effect of microarc oxidation modes on properties of formed surface, Vestnik Ufimsk. Gos. Aviats. Tekh. Univ., 2013, vol. 17, no. 3, pp. 217–222.
4.
Zurück zum Zitat Grin’, R.R., Gallyamova, R.F., Dudareva, N.Yu., Sirenko, A.A., and Musin, F.F., Structural features of modified layer obtained by microarc oxidation on AK12D alloy, Pis’ma o Mater., 2014, vol. 4, no. 3, pp. 175–178. Grin’, R.R., Gallyamova, R.F., Dudareva, N.Yu., Sirenko, A.A., and Musin, F.F., Structural features of modified layer obtained by microarc oxidation on AK12D alloy, Pis’ma o Mater., 2014, vol. 4, no. 3, pp. 175–178.
5.
Zurück zum Zitat Grigor’yants, A.G., Tret’yakov, R.S., and Funtikov, V.A., Improving quality of surface layers of parts obtained by laser additive technology, Tekhnol. Mashinostr., 2015, no. 10, pp. 68–73. Grigor’yants, A.G., Tret’yakov, R.S., and Funtikov, V.A., Improving quality of surface layers of parts obtained by laser additive technology, Tekhnol. Mashinostr., 2015, no. 10, pp. 68–73.
6.
Zurück zum Zitat Kovaleva, M., Tyurin, Yu., Vasilik, N., Kolisnichenko, O., Prozorova, M., Arseenko, M., Yapryntsev, M., Sirota, V., and Pavlenko, I., Effect of processing parameters on the microstructure and properties of WC–10Co–4Cr coatings formed by a new multi-chamber gas-dynamic accelerator, Ceram. Int., 2015, vol. 41, no. 10, pp. 15067–15074.CrossRef Kovaleva, M., Tyurin, Yu., Vasilik, N., Kolisnichenko, O., Prozorova, M., Arseenko, M., Yapryntsev, M., Sirota, V., and Pavlenko, I., Effect of processing parameters on the microstructure and properties of WC–10Co–4Cr coatings formed by a new multi-chamber gas-dynamic accelerator, Ceram. Int., 2015, vol. 41, no. 10, pp. 15067–15074.CrossRef
7.
Zurück zum Zitat Kiseleva, S.K., Zaynullina, L.I., and Dudareva, N.Y., Influence of the microstructure Al–12% Si alloy on the properties of the oxide layer formed with MAO, Mater. Sci. Forum, 2016, vol. 870, pp. 481–486.CrossRef Kiseleva, S.K., Zaynullina, L.I., and Dudareva, N.Y., Influence of the microstructure Al–12% Si alloy on the properties of the oxide layer formed with MAO, Mater. Sci. Forum, 2016, vol. 870, pp. 481–486.CrossRef
8.
Zurück zum Zitat Muboyadzhyan, S.A. and Budinovskii, S.A., Ion-plasma technology: promising processes, coatings, equipment, Aviats. Mater. Tekhnol., 2017, no. 5, pp. 39–54. Muboyadzhyan, S.A. and Budinovskii, S.A., Ion-plasma technology: promising processes, coatings, equipment, Aviats. Mater. Tekhnol., 2017, no. 5, pp. 39–54.
9.
Zurück zum Zitat Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Plasma electrolysis for surface engineering, Surf. Coat. Technol., 1999, vol. 122, nos. 2–3, pp. 73–93.CrossRef Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Plasma electrolysis for surface engineering, Surf. Coat. Technol., 1999, vol. 122, nos. 2–3, pp. 73–93.CrossRef
10.
Zurück zum Zitat Gupta, P., Tenhundfeld, G., Daigle, E.O., and Ryabkov, D., Electrolytic plasma technology: Science and engineering—an overview, Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8746–8760.CrossRef Gupta, P., Tenhundfeld, G., Daigle, E.O., and Ryabkov, D., Electrolytic plasma technology: Science and engineering—an overview, Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8746–8760.CrossRef
11.
Zurück zum Zitat Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic hardening of steels: review, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 6, pp. 531–546.CrossRef Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic hardening of steels: review, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 6, pp. 531–546.CrossRef
12.
Zurück zum Zitat Rakhimyanov, Kh.M. and Eremina, A.S., Installation for chemical-thermal treatment in electrolyte plasma, Sb. Nauchn. Tr. Novosib. Gos. Tekh. Univ., 2006, no. 3 (45), pp. 141–144. Rakhimyanov, Kh.M. and Eremina, A.S., Installation for chemical-thermal treatment in electrolyte plasma, Sb. Nauchn. Tr. Novosib. Gos. Tekh. Univ., 2006, no. 3 (45), pp. 141–144.
13.
Zurück zum Zitat Kulikov, I.S., Vashchenko, S.V., and Kamenev, A.Ya., Elektrolitno-plazmennaya obrabotka materialov (Electrolytic-Plasma Processing of Materials), Minsk: Belaruskaya Navuka, 2010, 232 p. Kulikov, I.S., Vashchenko, S.V., and Kamenev, A.Ya., Elektrolitno-plazmennaya obrabotka materialov (Electrolytic-Plasma Processing of Materials), Minsk: Belaruskaya Navuka, 2010, 232 p.
14.
Zurück zum Zitat Kusmanov, S.A., Shadrin, S.Yu., and Belkin, P.N., Carbon transfer from aqueous electrolytes to steel by anode plasma electrolytic carburizing, Surf. Coat. Technol., 2014, vol. 258, pp. 727–733.CrossRef Kusmanov, S.A., Shadrin, S.Yu., and Belkin, P.N., Carbon transfer from aqueous electrolytes to steel by anode plasma electrolytic carburizing, Surf. Coat. Technol., 2014, vol. 258, pp. 727–733.CrossRef
15.
Zurück zum Zitat Alfereva, T.I., Belkin, P.N., and Zhirov, A.V., Rapid cementation of steel from a coating under anodic electrolytic heating conditions, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 2, pp. 313–316.CrossRef Alfereva, T.I., Belkin, P.N., and Zhirov, A.V., Rapid cementation of steel from a coating under anodic electrolytic heating conditions, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 2, pp. 313–316.CrossRef
16.
Zurück zum Zitat Belkin, P.N., Kusmanov, S.A., Dyakov, I.G., Komissarova, M.R., and Parfenyuk, V.I., Anode plasma electrolytic carburizing of commercial pure titanium, Surf. Coat. Technol., 2016, vol. 307, pp. 1303–1309.CrossRef Belkin, P.N., Kusmanov, S.A., Dyakov, I.G., Komissarova, M.R., and Parfenyuk, V.I., Anode plasma electrolytic carburizing of commercial pure titanium, Surf. Coat. Technol., 2016, vol. 307, pp. 1303–1309.CrossRef
17.
Zurück zum Zitat Skakov, M., Rakhadilov, B., Batyrbekov, E., and Scheffner, M., Change of structure and mechanical properties of R6M5 steel surface layer at electrolytic-plasma nitriding, Adv. Mater. Res., 2014, vol. 1040, pp. 753–758.CrossRef Skakov, M., Rakhadilov, B., Batyrbekov, E., and Scheffner, M., Change of structure and mechanical properties of R6M5 steel surface layer at electrolytic-plasma nitriding, Adv. Mater. Res., 2014, vol. 1040, pp. 753–758.CrossRef
18.
Zurück zum Zitat Kusmanov, S.A., Smirnov, A.A., Silkin, S.A., and Belkin, P.N., Modification of low-alloy steel surface by plasma electrolytic nitriding, J. Mater. Eng. Perform., 2016, vol. 25, no. 7, pp. 2576–2582.CrossRef Kusmanov, S.A., Smirnov, A.A., Silkin, S.A., and Belkin, P.N., Modification of low-alloy steel surface by plasma electrolytic nitriding, J. Mater. Eng. Perform., 2016, vol. 25, no. 7, pp. 2576–2582.CrossRef
19.
Zurück zum Zitat Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic nitriding of steels, J. Surf. Invest., 2017, vol. 11, no. 4, pp. 767–789.CrossRef Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic nitriding of steels, J. Surf. Invest., 2017, vol. 11, no. 4, pp. 767–789.CrossRef
20.
Zurück zum Zitat Kusmanov, S.A., Kusmanova, Yu.V., Naumov, A.R., and Belkin, P.N., Features of anode plasma electrolytic nitrocarburising of low carbon steel, Surf. Coat. Technol., 2015, vol. 272, pp. 149–157.CrossRef Kusmanov, S.A., Kusmanova, Yu.V., Naumov, A.R., and Belkin, P.N., Features of anode plasma electrolytic nitrocarburising of low carbon steel, Surf. Coat. Technol., 2015, vol. 272, pp. 149–157.CrossRef
21.
Zurück zum Zitat Kusmanov, S.A., Dyakov, I.G., Kusmanova, Yu.V., and Belkin, P.N., Surface modification of low-carbon steels by plasma electrolytic nitrocarburising, Plasma Chem. Plasma Process., 2016, vol. 36, no. 5, pp. 1271–1286.CrossRef Kusmanov, S.A., Dyakov, I.G., Kusmanova, Yu.V., and Belkin, P.N., Surface modification of low-carbon steels by plasma electrolytic nitrocarburising, Plasma Chem. Plasma Process., 2016, vol. 36, no. 5, pp. 1271–1286.CrossRef
22.
Zurück zum Zitat Kusmanov, S.A., Grishina, E.P., Belkin, P.N., Kusmanova, Y.V., and Kudryakova, N.O., Raising the corrosion resistance of low-carbon steels by electrolytic-plasma saturation with nitrogen and carbon, Met. Sci. Heat Treat., 2017, vol. 59, nos. 1–2, pp. 117–123.CrossRef Kusmanov, S.A., Grishina, E.P., Belkin, P.N., Kusmanova, Y.V., and Kudryakova, N.O., Raising the corrosion resistance of low-carbon steels by electrolytic-plasma saturation with nitrogen and carbon, Met. Sci. Heat Treat., 2017, vol. 59, nos. 1–2, pp. 117–123.CrossRef
23.
Zurück zum Zitat Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Surface Modification of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 1. Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Surface Modification of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 1.
24.
Zurück zum Zitat Popova, N.A., Zhurerova, L.G., Nikonenko, E.L., and Skakov, M.K., Effect of plasma electrolytic nitrocarburizing on phase composition of 0.3C–1Mn–1Si–Fe steel, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 130–135.CrossRef Popova, N.A., Zhurerova, L.G., Nikonenko, E.L., and Skakov, M.K., Effect of plasma electrolytic nitrocarburizing on phase composition of 0.3C–1Mn–1Si–Fe steel, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 130–135.CrossRef
25.
Zurück zum Zitat Popova, N.A., Erygina, L.A., Nikonenko, E.L., Skakov, M.K., Koneva, N.A., and Kozlov, E.V., Phase transformations in 0.34C–1Cr–1Ni–1Mo–Fe steel under the action of electrolytic plasma nitrocarburizing, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, pp. 354–356.CrossRef Popova, N.A., Erygina, L.A., Nikonenko, E.L., Skakov, M.K., Koneva, N.A., and Kozlov, E.V., Phase transformations in 0.34C–1Cr–1Ni–1Mo–Fe steel under the action of electrolytic plasma nitrocarburizing, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, pp. 354–356.CrossRef
26.
Zurück zum Zitat Popova, N.A., Nikonenko, E.L., Erbolatova, G.U., Kalashnikov, M.P., and Skakov, M.K., Phase transformations in 40KhNYu alloy at plasma chemical-thermal treatment, Fundam. Probl. Sovrem. Materialoved., 2018, vol. 15, no. 3, pp. 339–347. Popova, N.A., Nikonenko, E.L., Erbolatova, G.U., Kalashnikov, M.P., and Skakov, M.K., Phase transformations in 40KhNYu alloy at plasma chemical-thermal treatment, Fundam. Probl. Sovrem. Materialoved., 2018, vol. 15, no. 3, pp. 339–347.
27.
Zurück zum Zitat Kozlov, E.V., Popova, N.A., Kabanina, O.V., Klimashin, S.I., and Gromov, V.E., Evolyutsiya fazovogo sostava, defektnoi struktury, vnutrennikh napryazhenii i pereraspredelenie ugleroda pri otpuske litoi konstruktsionnoi stali (Evolution of Phase Composition, Defective Structure, Internal Stresses and Redistribution of Carbon during Tempering of Cast Structural Steel), Novokuznetsk: Sib. Gos. Ind. Univ., 2007. Kozlov, E.V., Popova, N.A., Kabanina, O.V., Klimashin, S.I., and Gromov, V.E., Evolyutsiya fazovogo sostava, defektnoi struktury, vnutrennikh napryazhenii i pereraspredelenie ugleroda pri otpuske litoi konstruktsionnoi stali (Evolution of Phase Composition, Defective Structure, Internal Stresses and Redistribution of Carbon during Tempering of Cast Structural Steel), Novokuznetsk: Sib. Gos. Ind. Univ., 2007.
28.
Zurück zum Zitat Ivanov, Yu.F. and Kozlov, E.V., Bulk and surface quenching of structural steel: Morphological analysis of the structure, Russ. Phys. J., 2002, vol. 45, no. 3, pp. 209–231.CrossRef Ivanov, Yu.F. and Kozlov, E.V., Bulk and surface quenching of structural steel: Morphological analysis of the structure, Russ. Phys. J., 2002, vol. 45, no. 3, pp. 209–231.CrossRef
Metadaten
Titel
Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels
verfasst von
N. A. Popova
E. L. Nikonenko
A. V. Nikonenko
V. E. Gromov
O. A. Peregudov
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 10/2019
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219100127

Weitere Artikel der Ausgabe 10/2019

Steel in Translation 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.