Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Effect of limestone powder on mechanical strength, durability and drying shrinkage of alkali-activated slag pastes

verfasst von: Alaa M. Rashad, W. M. Morsi, Sherif A. Khafaga

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of limestone powder (LSP) as a cement replacement is used in abundant applications due to its low cost and wide availability. Adversely, the use of LSP as a part of the precursors of alkali-activated materials (AAMs) is still in the developing stage. This scarcity of studies opened the door and encouraged the researchers for more investigations. Thus, this paper studied the effect of various amounts of LSP on some properties of alkali-activated slag (AAS) pastes activated with NaOH and Na2SiO3 solution. Slag was partially replaced with LSP at ratios of 15–60 wt%. The effects of LSP on mechanical strength, water absorption, chloride penetration permeability, drying shrinkage were studied. Advanced apparatuses were applied to detect the changes in crystalline phases, hydration products and microstructure of the pastes with and without the inclusion of LSP. The results confirmed that 15% LSP was the optimum amount, which is responsible for the highest mechanical strength, lowest water absorption and lowest charge passed. The drying shrinkage was mitigated with the inclusion of LSP. The inclusion of 15% LSP enhanced the 28-day compressive strength and flexural strength by 11.41% and 13.7%, respectively, while the water absorption, charge passed and drying shrinkage were decreased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rashad AM (2015) A brief on high-volume Class F fly ash as cement replacement–A guide for Civil Engineer. Int J Sustain Built Environ 4(2):278–306CrossRef Rashad AM (2015) A brief on high-volume Class F fly ash as cement replacement–A guide for Civil Engineer. Int J Sustain Built Environ 4(2):278–306CrossRef
2.
Zurück zum Zitat Rashad AM (2018) An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater 187:89–117CrossRef Rashad AM (2018) An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater 187:89–117CrossRef
3.
Zurück zum Zitat Rashad AM (2019) A synopsis manual about recycling steel slag as a cementitious material. J Market Res 8(5):4940–4955 Rashad AM (2019) A synopsis manual about recycling steel slag as a cementitious material. J Market Res 8(5):4940–4955
4.
Zurück zum Zitat Tomkins C, Throwdown G (2009) Redefining what’s possible for clean energy by 2020, Gigaton Throwdown: San Francisco. CA, USA Tomkins C, Throwdown G (2009) Redefining what’s possible for clean energy by 2020, Gigaton Throwdown: San Francisco. CA, USA
5.
Zurück zum Zitat Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete. A review, Journal of Cleaner Production 251:119679CrossRef Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete. A review, Journal of Cleaner Production 251:119679CrossRef
6.
Zurück zum Zitat Rashad AM (2013) Alkali-activated metakaolin: A short guide for civil Engineer–An overview. Constr Build Mater 41:751–765CrossRef Rashad AM (2013) Alkali-activated metakaolin: A short guide for civil Engineer–An overview. Constr Build Mater 41:751–765CrossRef
7.
Zurück zum Zitat Rashad AM (2013) A comprehensive overview about the influence of different additives on the properties of alkali-activated slag–A guide for Civil Engineer. Constr Build Mater 47:29–55CrossRef Rashad AM (2013) A comprehensive overview about the influence of different additives on the properties of alkali-activated slag–A guide for Civil Engineer. Constr Build Mater 47:29–55CrossRef
8.
Zurück zum Zitat Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025CrossRef Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025CrossRef
9.
Zurück zum Zitat Rakhimova NR, Rakhimov RZ (2019) Literature review of advances in materials used in development of alkali-activated mortars, concretes, and composites. J Mater Civ Eng 31(11):03119002CrossRef Rakhimova NR, Rakhimov RZ (2019) Literature review of advances in materials used in development of alkali-activated mortars, concretes, and composites. J Mater Civ Eng 31(11):03119002CrossRef
10.
Zurück zum Zitat Ortega-Zavala DE, Santana-Carrillo JL, Burciaga-Díaz O, Escalante-García JI (2019) An initial study on alkali activated limestone binders. Cem Concr Res 120:267–278CrossRef Ortega-Zavala DE, Santana-Carrillo JL, Burciaga-Díaz O, Escalante-García JI (2019) An initial study on alkali activated limestone binders. Cem Concr Res 120:267–278CrossRef
11.
Zurück zum Zitat Panesar DK, Zhang R (2020) Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials–A review. Constr Build Mater 251:118866CrossRef Panesar DK, Zhang R (2020) Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials–A review. Constr Build Mater 251:118866CrossRef
12.
Zurück zum Zitat Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z (2018) A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr Build Mater 181:659–672CrossRef Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z (2018) A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr Build Mater 181:659–672CrossRef
13.
Zurück zum Zitat Wang D, Shi C, Farzadnia N, Shi Z, Jia H (2018) A review on effects of limestone powder on the properties of concrete. Constr Build Mater 192:153–166CrossRef Wang D, Shi C, Farzadnia N, Shi Z, Jia H (2018) A review on effects of limestone powder on the properties of concrete. Constr Build Mater 192:153–166CrossRef
14.
Zurück zum Zitat Choi S-G, Chang I, Lee M, Lee J-H, Han J-T, Kwon T-H (2020) Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr Build Mater 246:118415CrossRef Choi S-G, Chang I, Lee M, Lee J-H, Han J-T, Kwon T-H (2020) Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr Build Mater 246:118415CrossRef
15.
Zurück zum Zitat Aboulayt A, Riahi M, Touhami MO, Hannache H, Gomina M, Moussa R (2017) Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv Powder Technol 28(9):2393–2401CrossRef Aboulayt A, Riahi M, Touhami MO, Hannache H, Gomina M, Moussa R (2017) Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv Powder Technol 28(9):2393–2401CrossRef
16.
Zurück zum Zitat Qian J, Song M (2015) Study on influence of limestone powder on the fresh and hardened properties of early age metakaolin based geopolymer. Springer, Calcined Clays for Sustainable Concrete, pp 253–259 Qian J, Song M (2015) Study on influence of limestone powder on the fresh and hardened properties of early age metakaolin based geopolymer. Springer, Calcined Clays for Sustainable Concrete, pp 253–259
17.
Zurück zum Zitat Perez-Cortes P, Escalante-Garcia JI (2020) Design and optimization of alkaline binders of limestone-metakaolin–A comparison of strength, microstructure and sustainability with portland cement and geopolymers. J Clean Prod 273:123118CrossRef Perez-Cortes P, Escalante-Garcia JI (2020) Design and optimization of alkaline binders of limestone-metakaolin–A comparison of strength, microstructure and sustainability with portland cement and geopolymers. J Clean Prod 273:123118CrossRef
18.
Zurück zum Zitat A. Aboulayt, A. Gounni, M. El Alami, R. Hakkou, H. Hannache, M. Gomina, R. Moussa, Thermo-physical characterization of a metakaolin-based geopolymer incorporating calcium carbonate: A case study, Materials Chemistry and Physics (2020) 123266. A. Aboulayt, A. Gounni, M. El Alami, R. Hakkou, H. Hannache, M. Gomina, R. Moussa, Thermo-physical characterization of a metakaolin-based geopolymer incorporating calcium carbonate: A case study, Materials Chemistry and Physics (2020) 123266.
19.
Zurück zum Zitat Rashad AM (2015) Influence of different additives on the properties of sodium sulfate activated slag. Constr Build Mater 79:379–389CrossRef Rashad AM (2015) Influence of different additives on the properties of sodium sulfate activated slag. Constr Build Mater 79:379–389CrossRef
20.
Zurück zum Zitat Lemougna PN, Wang K-T, Tang Q, Kamseu E, Billong N, Melo UC, Cui X-M (2017) Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite. Appl Clay Sci 148:109–117CrossRef Lemougna PN, Wang K-T, Tang Q, Kamseu E, Billong N, Melo UC, Cui X-M (2017) Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite. Appl Clay Sci 148:109–117CrossRef
21.
Zurück zum Zitat Gao X, Yu Q, Brouwers H (2015) Properties of alkali activated slag–fly ash blends with limestone addition. Cement Concr Compos 59:119–128CrossRef Gao X, Yu Q, Brouwers H (2015) Properties of alkali activated slag–fly ash blends with limestone addition. Cement Concr Compos 59:119–128CrossRef
22.
Zurück zum Zitat Xiang J, Liu L, Cui X, He Y, Zheng G, Shi C (2018) Effect of limestone on rheological, shrinkage and mechanical properties of alkali–Activated slag/fly ash grouting materials. Constr Build Mater 191:1285–1292CrossRef Xiang J, Liu L, Cui X, He Y, Zheng G, Shi C (2018) Effect of limestone on rheological, shrinkage and mechanical properties of alkali–Activated slag/fly ash grouting materials. Constr Build Mater 191:1285–1292CrossRef
23.
Zurück zum Zitat Kalinkin AM, Gurevich BI, Myshenkov MS, Chislov MV, Kalinkina EV, Zvereva IA, Cherkezova-Zheleva Z, Paneva D, Petkova V (2020) Synthesis of Fly Ash-Based Geopolymers: Effect of Calcite Addition and Mechanical Activation. Minerals 10(9):827CrossRef Kalinkin AM, Gurevich BI, Myshenkov MS, Chislov MV, Kalinkina EV, Zvereva IA, Cherkezova-Zheleva Z, Paneva D, Petkova V (2020) Synthesis of Fly Ash-Based Geopolymers: Effect of Calcite Addition and Mechanical Activation. Minerals 10(9):827CrossRef
24.
Zurück zum Zitat Topark-Ngarm P, Tho-In T, Sata V, Chindaprasirt P, Cao T (2019) Influence of Glass and Limestone Powders in High Calcium Fly Ash Geopolymer Paste on Compressive Strength and Microstructure. Trans Tech Publ, Key Engineering Materials, pp 397–403 Topark-Ngarm P, Tho-In T, Sata V, Chindaprasirt P, Cao T (2019) Influence of Glass and Limestone Powders in High Calcium Fly Ash Geopolymer Paste on Compressive Strength and Microstructure. Trans Tech Publ, Key Engineering Materials, pp 397–403
25.
Zurück zum Zitat M. Elchalakani, M. Dong, A. Karrech, G. Li, M. Mohamed Ali, T. Xie, B. Yang, Development of fly ash-and slag-based geopolymer concrete with calcium carbonate or microsilica, Journal of Materials in Civil Engineering 30(12) (2018) 04018325. M. Elchalakani, M. Dong, A. Karrech, G. Li, M. Mohamed Ali, T. Xie, B. Yang, Development of fly ash-and slag-based geopolymer concrete with calcium carbonate or microsilica, Journal of Materials in Civil Engineering 30(12) (2018) 04018325.
26.
Zurück zum Zitat Yip CK, Provis JL, Lukey GC, van Deventer JS (2008) Carbonate mineral addition to metakaolin-based geopolymers. Cement Concr Compos 30(10):979–985CrossRef Yip CK, Provis JL, Lukey GC, van Deventer JS (2008) Carbonate mineral addition to metakaolin-based geopolymers. Cement Concr Compos 30(10):979–985CrossRef
27.
Zurück zum Zitat Bayiha BN, Billong N, Yamb E, Kaze RC, Nzengwa R (2019) Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater 217:28–35CrossRef Bayiha BN, Billong N, Yamb E, Kaze RC, Nzengwa R (2019) Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater 217:28–35CrossRef
28.
Zurück zum Zitat Yuan B, Yu Q, Dainese E, Brouwers H (2017) Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation. Constr Build Mater 153:459–468CrossRef Yuan B, Yu Q, Dainese E, Brouwers H (2017) Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation. Constr Build Mater 153:459–468CrossRef
29.
Zurück zum Zitat Perez-Cortes P, Escalante-Garcia JI (2020) Alkali activated metakaolin with high limestone contents–Statistical modeling of strength and environmental and cost analyses. Cement Concr Compos 106:103450CrossRef Perez-Cortes P, Escalante-Garcia JI (2020) Alkali activated metakaolin with high limestone contents–Statistical modeling of strength and environmental and cost analyses. Cement Concr Compos 106:103450CrossRef
30.
Zurück zum Zitat Moseson AJ, Moseson DE, Barsoum MW (2012) High volume limestone alkali-activated cement developed by design of experiment. Cement Concr Compos 34(3):328–336CrossRef Moseson AJ, Moseson DE, Barsoum MW (2012) High volume limestone alkali-activated cement developed by design of experiment. Cement Concr Compos 34(3):328–336CrossRef
31.
Zurück zum Zitat Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem Concr Res 35(10):1984–1992CrossRef Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem Concr Res 35(10):1984–1992CrossRef
32.
Zurück zum Zitat A.M. Rashad, G.M. Essa, Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature, Cement and Concrete Composites (2020) 103617. A.M. Rashad, G.M. Essa, Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature, Cement and Concrete Composites (2020) 103617.
33.
Zurück zum Zitat Rashad AM, Zeedan SR, Hassan AA (2016) Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Constr Build Mater 102:811–820CrossRef Rashad AM, Zeedan SR, Hassan AA (2016) Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Constr Build Mater 102:811–820CrossRef
34.
Zurück zum Zitat Burciaga-Díaz O, Gómez-Zamorano LY, Escalante-García JI (2016) Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin. Constr Build Mater 113:917–926CrossRef Burciaga-Díaz O, Gómez-Zamorano LY, Escalante-García JI (2016) Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin. Constr Build Mater 113:917–926CrossRef
35.
Zurück zum Zitat Chi M (2012) Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater 35:240–245CrossRef Chi M (2012) Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater 35:240–245CrossRef
36.
Zurück zum Zitat Bilim C, Karahan O, Atiş CD, Ilkentapar S (2013) Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Mater Des 44:540–547CrossRef Bilim C, Karahan O, Atiş CD, Ilkentapar S (2013) Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Mater Des 44:540–547CrossRef
37.
Zurück zum Zitat Nasir M, Johari MAM, Maslehuddin M, Yusuf MO, Al-Harthi MA (2020) Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Constr Build Mater 251:118961CrossRef Nasir M, Johari MAM, Maslehuddin M, Yusuf MO, Al-Harthi MA (2020) Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Constr Build Mater 251:118961CrossRef
38.
Zurück zum Zitat Yuan B, Yu Q, Brouwers H (2017) Assessing the chemical involvement of limestone powder in sodium carbonate activated slag. Mater Struct 50(2):136CrossRef Yuan B, Yu Q, Brouwers H (2017) Assessing the chemical involvement of limestone powder in sodium carbonate activated slag. Mater Struct 50(2):136CrossRef
39.
Zurück zum Zitat Zhang L, Suleiman A, Nehdi M (2020) Self-healing in fiber-reinforced alkali-activated slag composites incorporating different additives. Constr Build Mater 262:120059CrossRef Zhang L, Suleiman A, Nehdi M (2020) Self-healing in fiber-reinforced alkali-activated slag composites incorporating different additives. Constr Build Mater 262:120059CrossRef
40.
Zurück zum Zitat Rakhimova NR, Rakhimov RZ, Naumkina NI, Khuzin AF, Osin YN (2016) Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cement Concr Compos 72:268–274CrossRef Rakhimova NR, Rakhimov RZ, Naumkina NI, Khuzin AF, Osin YN (2016) Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cement Concr Compos 72:268–274CrossRef
41.
Zurück zum Zitat Yum WS, Jeong Y, Song H, Oh JE (2018) Recycling of limestone fines using Ca (OH) 2-and Ba (OH) 2-activated slag systems for eco-friendly concrete brick production. Constr Build Mater 185:275–284CrossRef Yum WS, Jeong Y, Song H, Oh JE (2018) Recycling of limestone fines using Ca (OH) 2-and Ba (OH) 2-activated slag systems for eco-friendly concrete brick production. Constr Build Mater 185:275–284CrossRef
42.
Zurück zum Zitat Cwirzen A, Provis JL, Penttala V, Habermehl-Cwirzen K (2014) The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr Build Mater 66:53–62CrossRef Cwirzen A, Provis JL, Penttala V, Habermehl-Cwirzen K (2014) The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr Build Mater 66:53–62CrossRef
43.
Zurück zum Zitat Avila-López U, Almanza-Robles J, Escalante-García J (2015) Investigation of novel waste glass and limestone binders using statistical methods. Constr Build Mater 82:296–303CrossRef Avila-López U, Almanza-Robles J, Escalante-García J (2015) Investigation of novel waste glass and limestone binders using statistical methods. Constr Build Mater 82:296–303CrossRef
44.
Zurück zum Zitat Hu X, Shi C, Shi Z, Zhang L (2019) Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement Concr Compos 104:103392CrossRef Hu X, Shi C, Shi Z, Zhang L (2019) Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement Concr Compos 104:103392CrossRef
45.
Zurück zum Zitat Tsivilis S, Chaniotakis E, Batis G, Meletiou C, Kasselouri V, Kakali G, Sakellariou A, Pavlakis G, Psimadas C (1999) The effect of clinker and limestone quality on the gas permeability, water absorption and pore structure of limestone cement concrete. Cement Concr Compos 21(2):139–146CrossRef Tsivilis S, Chaniotakis E, Batis G, Meletiou C, Kasselouri V, Kakali G, Sakellariou A, Pavlakis G, Psimadas C (1999) The effect of clinker and limestone quality on the gas permeability, water absorption and pore structure of limestone cement concrete. Cement Concr Compos 21(2):139–146CrossRef
46.
Zurück zum Zitat Mehta A, Siddique R, Ozbakkaloglu T, Shaikh FUA, Belarbi R (2020) Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Constr Build Mater 257:119548CrossRef Mehta A, Siddique R, Ozbakkaloglu T, Shaikh FUA, Belarbi R (2020) Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Constr Build Mater 257:119548CrossRef
47.
Zurück zum Zitat Lee W-H, Wang J-H, Ding Y-C, Cheng T-W (2019) A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Constr Build Mater 211:807–813CrossRef Lee W-H, Wang J-H, Ding Y-C, Cheng T-W (2019) A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Constr Build Mater 211:807–813CrossRef
48.
Zurück zum Zitat Behfarnia K, Rostami M (2017) Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr Build Mater 131:205–213CrossRef Behfarnia K, Rostami M (2017) Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr Build Mater 131:205–213CrossRef
49.
Zurück zum Zitat Bernal SA, de Gutiérrez RM, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108CrossRef Bernal SA, de Gutiérrez RM, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108CrossRef
50.
Zurück zum Zitat Ravikumar D, Neithalath N (2013) Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cem Concr Res 47:31–42CrossRef Ravikumar D, Neithalath N (2013) Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cem Concr Res 47:31–42CrossRef
51.
Zurück zum Zitat Najimi M, Ghafoori N, Sharbaf M (2018) Alkali-activated natural pozzolan/slag mortars: A parametric study. Constr Build Mater 164:625–643CrossRef Najimi M, Ghafoori N, Sharbaf M (2018) Alkali-activated natural pozzolan/slag mortars: A parametric study. Constr Build Mater 164:625–643CrossRef
52.
Zurück zum Zitat Yoon H, Park SM, Lee H-K (2018) Effect of MgO on chloride penetration resistance of alkali-activated binder. Constr Build Mater 178:584–592CrossRef Yoon H, Park SM, Lee H-K (2018) Effect of MgO on chloride penetration resistance of alkali-activated binder. Constr Build Mater 178:584–592CrossRef
53.
Zurück zum Zitat Kumar V, Kumar A, Prasad B (2019) Mechanical behavior of non-silicate based alkali-activated ground granulated blast furnace slag. Constr Build Mater 198:494–500CrossRef Kumar V, Kumar A, Prasad B (2019) Mechanical behavior of non-silicate based alkali-activated ground granulated blast furnace slag. Constr Build Mater 198:494–500CrossRef
54.
Zurück zum Zitat Manjunath R, Narasimhan MC, Umesha K (2019) Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Constr Build Mater 229:116887CrossRef Manjunath R, Narasimhan MC, Umesha K (2019) Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Constr Build Mater 229:116887CrossRef
55.
Zurück zum Zitat Rostami M, Behfarnia K (2017) The effect of silica fume on durability of alkali activated slag concrete. Constr Build Mater 134:262–268CrossRef Rostami M, Behfarnia K (2017) The effect of silica fume on durability of alkali activated slag concrete. Constr Build Mater 134:262–268CrossRef
56.
Zurück zum Zitat Khan MNN, Sarker PK (2020) Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar. Constr Build Mater 263:120177CrossRef Khan MNN, Sarker PK (2020) Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar. Constr Build Mater 263:120177CrossRef
57.
Zurück zum Zitat Ravikumar D, Neithalath N (2013) An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes. Cement Concr Compos 44:58–68CrossRef Ravikumar D, Neithalath N (2013) An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes. Cement Concr Compos 44:58–68CrossRef
58.
Zurück zum Zitat Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256CrossRef Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256CrossRef
59.
Zurück zum Zitat Ghafoori N, Spitek R, Najimi M (2016) Influence of limestone size and content on transport properties of self-consolidating concrete. Constr Build Mater 127:588–595CrossRef Ghafoori N, Spitek R, Najimi M (2016) Influence of limestone size and content on transport properties of self-consolidating concrete. Constr Build Mater 127:588–595CrossRef
60.
Zurück zum Zitat H. Du, S. Dai Pang, High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute, Construction and Building Materials 264 (2020) 120152. H. Du, S. Dai Pang, High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute, Construction and Building Materials 264 (2020) 120152.
61.
Zurück zum Zitat Sun J, Chen Z (2018) Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol 338:725–733CrossRef Sun J, Chen Z (2018) Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol 338:725–733CrossRef
62.
Zurück zum Zitat Collins F, Sanjayan JG (1999) Workability and mechanical properties of alkali activated slag concrete. Cem Concr Res 29(3):455–458CrossRef Collins F, Sanjayan JG (1999) Workability and mechanical properties of alkali activated slag concrete. Cem Concr Res 29(3):455–458CrossRef
63.
Zurück zum Zitat Atiş CD, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555CrossRef Atiş CD, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555CrossRef
64.
Zurück zum Zitat Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129CrossRef Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129CrossRef
65.
Zurück zum Zitat Neto AAM, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38(4):565–574CrossRef Neto AAM, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38(4):565–574CrossRef
66.
Zurück zum Zitat Ye H, Radlińska A (2016) Shrinkage mechanisms of alkali-activated slag. Cem Concr Res 88:126–135CrossRef Ye H, Radlińska A (2016) Shrinkage mechanisms of alkali-activated slag. Cem Concr Res 88:126–135CrossRef
67.
Zurück zum Zitat Ye H, Cartwright C, Rajabipour F, Radlińska A (2017) Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement Concr Compos 76:13–24CrossRef Ye H, Cartwright C, Rajabipour F, Radlińska A (2017) Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement Concr Compos 76:13–24CrossRef
68.
Zurück zum Zitat Meddah MS, Lmbachiya MC, Dhir RK (2014) Potential use of binary and composite limestone cements in concrete production. Constr Build Mater 58:193–205CrossRef Meddah MS, Lmbachiya MC, Dhir RK (2014) Potential use of binary and composite limestone cements in concrete production. Constr Build Mater 58:193–205CrossRef
69.
Zurück zum Zitat Tongaroonsri S, Tangtermsirikul S (2009) Effect of mineral admixtures and curing periods on shrinkage and cracking age under restrained condition. Constr Build Mater 23(2):1050–1056CrossRef Tongaroonsri S, Tangtermsirikul S (2009) Effect of mineral admixtures and curing periods on shrinkage and cracking age under restrained condition. Constr Build Mater 23(2):1050–1056CrossRef
70.
Zurück zum Zitat Li P, Brouwers H, Chen W, Yu Q (2020) Optimization and characterization of high-volume limestone powder in sustainable Ultra-high Performance Concrete. Constr Build Mater 242:118112CrossRef Li P, Brouwers H, Chen W, Yu Q (2020) Optimization and characterization of high-volume limestone powder in sustainable Ultra-high Performance Concrete. Constr Build Mater 242:118112CrossRef
71.
Zurück zum Zitat Rakhimova NR, Rakhimov RZ, Morozov VP, Gaifullin AR, Potapova LI, Gubaidullina AM, Osin YN (2018) Marl-based geopolymers incorporated with limestone: A feasibility study. J Non-Cryst Solids 492:1–10CrossRef Rakhimova NR, Rakhimov RZ, Morozov VP, Gaifullin AR, Potapova LI, Gubaidullina AM, Osin YN (2018) Marl-based geopolymers incorporated with limestone: A feasibility study. J Non-Cryst Solids 492:1–10CrossRef
Metadaten
Titel
Effect of limestone powder on mechanical strength, durability and drying shrinkage of alkali-activated slag pastes
verfasst von
Alaa M. Rashad
W. M. Morsi
Sherif A. Khafaga
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00496-y

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe