Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2011

01.10.2011 | Research Paper

Effect of nanofluids on thin film evaporation in microchannels

verfasst von: Jun-Jie Zhao, Yuan-Yuan Duan, Xiao-Dong Wang, Bu-Xuan Wang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A thin film evaporation model based on the augmented Young–Laplace equation and kinetic theories was developed to describe the nanofluid effects on the extended evaporating meniscus in a microchannel. The nanofluid effects include the structural disjoining pressure, a thin porous coating layer at the surface formed by the nanoparticle deposition and the thermophysical property variations compared with the base fluid. The results show that the nanofluid thermal conductivity enhancement mainly due to the Brownian motion tends to greatly increase the liquid film thickness and the thin film heat transfer. The structural disjoining pressure effect tends to enhance the nanofluid spreading capability and the thin film evaporation. The nanoparticle-deposited porous coating layer improves the surface wettability while significantly reducing the thin film evaporation with increasing layer thickness due to the thermal resistance across this layer. The nanofluid thermal conductivity enhancement together with the structural disjoining pressure effect can not counteract the thermal resistance effects of the porous coating layer when the coating layer thickness is sufficiently large.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419CrossRef Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419CrossRef
Zurück zum Zitat Christopher DM, Zhang L (2010) Heat transfer in the microlayer under a bubble during nucleate boiling. Tsinghua Sci Technol 15(4):404–413CrossRef Christopher DM, Zhang L (2010) Heat transfer in the microlayer under a bubble during nucleate boiling. Tsinghua Sci Technol 15(4):404–413CrossRef
Zurück zum Zitat Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574CrossRef Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574CrossRef
Zurück zum Zitat Do KH, Jang SP (2010) Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 53:2183–2192CrossRef Do KH, Jang SP (2010) Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 53:2183–2192CrossRef
Zurück zum Zitat Eapen J, Rusconi R, Piazza R, Yip S (2010) The classical nature of thermal conduction in nanofluids. ASME J Heat Transf 132:102402CrossRef Eapen J, Rusconi R, Piazza R, Yip S (2010) The classical nature of thermal conduction in nanofluids. ASME J Heat Transf 132:102402CrossRef
Zurück zum Zitat Fan J, Wang LQ (2011) Review of heat conduction in nanofluids. ASME J Heat Transf 133:040801CrossRef Fan J, Wang LQ (2011) Review of heat conduction in nanofluids. ASME J Heat Transf 133:040801CrossRef
Zurück zum Zitat Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199CrossRef Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199CrossRef
Zurück zum Zitat Kim HD, Kim MH (2007) Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl Phys Lett 91:014104CrossRef Kim HD, Kim MH (2007) Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl Phys Lett 91:014104CrossRef
Zurück zum Zitat Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRef Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRef
Zurück zum Zitat Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121(2):280–288CrossRef Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121(2):280–288CrossRef
Zurück zum Zitat Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254CrossRef Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254CrossRef
Zurück zum Zitat Ma HB, Cheng P, Borgmeyer B, Wang YX (2008) Fluid flow and heat transfer in the evaporating thin film region. Microfluid Nanofluid 4:237–243CrossRef Ma HB, Cheng P, Borgmeyer B, Wang YX (2008) Fluid flow and heat transfer in the evaporating thin film region. Microfluid Nanofluid 4:237–243CrossRef
Zurück zum Zitat Nikolov A, Kondiparty K, Wasan D (2010) Nanoparticle self-structuring in a nanofluid film spreading on a solid surface. Langmuir 26(11):7665–7670CrossRef Nikolov A, Kondiparty K, Wasan D (2010) Nanoparticle self-structuring in a nanofluid film spreading on a solid surface. Langmuir 26(11):7665–7670CrossRef
Zurück zum Zitat Ozerinc S, Kakac S, Yazicioglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8:145–170CrossRef Ozerinc S, Kakac S, Yazicioglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8:145–170CrossRef
Zurück zum Zitat Panchamgam SS, Plawsky JL, Wayner PC Jr (2006) Spreading characteristics and microscale evaporative heat transfer in an ultrathin film containing a binary mixture. ASME J Heat Transf 128:1266–1275CrossRef Panchamgam SS, Plawsky JL, Wayner PC Jr (2006) Spreading characteristics and microscale evaporative heat transfer in an ultrathin film containing a binary mixture. ASME J Heat Transf 128:1266–1275CrossRef
Zurück zum Zitat Panchamgam SS, Plawsky JL, Wayner PC Jr (2007) Experimental evaluation of Marangoni shear in the contact line region of an evaporating 99+% pure octane meniscus. ASME J Heat Transf 129:1476–1485CrossRef Panchamgam SS, Plawsky JL, Wayner PC Jr (2007) Experimental evaluation of Marangoni shear in the contact line region of an evaporating 99+% pure octane meniscus. ASME J Heat Transf 129:1476–1485CrossRef
Zurück zum Zitat Park K, Noh KJ, Lee KS (2003) Transport phenomenon in the thin-film region of a micro-channel. Int J Heat Mass Transf 46:2381–2388CrossRef Park K, Noh KJ, Lee KS (2003) Transport phenomenon in the thin-film region of a micro-channel. Int J Heat Mass Transf 46:2381–2388CrossRef
Zurück zum Zitat Plawsky JL, Ojha M, Chatterjee A, Wayner PC Jr (2009) Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chem Eng Commun 196(5):658–696CrossRef Plawsky JL, Ojha M, Chatterjee A, Wayner PC Jr (2009) Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chem Eng Commun 196(5):658–696CrossRef
Zurück zum Zitat Sefiane K (2006) On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids. Appl Phys Lett 89:044106CrossRef Sefiane K (2006) On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids. Appl Phys Lett 89:044106CrossRef
Zurück zum Zitat Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:223101CrossRef Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:223101CrossRef
Zurück zum Zitat Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17:4940–4947CrossRef Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17:4940–4947CrossRef
Zurück zum Zitat Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13(4):474–480CrossRef Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13(4):474–480CrossRef
Zurück zum Zitat Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672CrossRef Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672CrossRef
Zurück zum Zitat Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transf 50:3933–3942CrossRef Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transf 50:3933–3942CrossRef
Zurück zum Zitat Wang H, Garimella SV, Murthy JY (2008) An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. Int J Heat Mass Transf 51:6317–6322CrossRef Wang H, Garimella SV, Murthy JY (2008) An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. Int J Heat Mass Transf 51:6317–6322CrossRef
Zurück zum Zitat Wang BX, Sheng WY, Peng XF (2009) A novel statistical clustering model for predicting thermal conductivity of nanofluid. Int J Thermophys 30:1992–1998CrossRef Wang BX, Sheng WY, Peng XF (2009) A novel statistical clustering model for predicting thermal conductivity of nanofluid. Int J Thermophys 30:1992–1998CrossRef
Zurück zum Zitat Warrier P, Yuan YH, Beck MP, Teja AS (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AICHE J 56(12):3243–3256CrossRef Warrier P, Yuan YH, Beck MP, Teja AS (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AICHE J 56(12):3243–3256CrossRef
Zurück zum Zitat Wasan DT, Nikolov AD (2006) Spreading of nanofluids on solids. Nature 423:156–159CrossRef Wasan DT, Nikolov AD (2006) Spreading of nanofluids on solids. Nature 423:156–159CrossRef
Zurück zum Zitat Wee SK, Kihm KD, Hallinan KP (2005) Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film. Int J Heat Mass Transf 48:265–278CrossRef Wee SK, Kihm KD, Hallinan KP (2005) Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film. Int J Heat Mass Transf 48:265–278CrossRef
Zurück zum Zitat Wen DS (2008) On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids. J Nanopart Res 10:1129–1140CrossRef Wen DS (2008) On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids. J Nanopart Res 10:1129–1140CrossRef
Zurück zum Zitat Wen DS, Lin GP, Vafai S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150CrossRef Wen DS, Lin GP, Vafai S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150CrossRef
Zurück zum Zitat Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef
Zurück zum Zitat Zhao JJ, Duan YY, Wang XD, Wang BX (2011a) Effects of superheat and temperature-dependent thermophysical properties on evaporating thin liquid films in microchannels. Int J Heat Mass Transf 54:1259–1267CrossRef Zhao JJ, Duan YY, Wang XD, Wang BX (2011a) Effects of superheat and temperature-dependent thermophysical properties on evaporating thin liquid films in microchannels. Int J Heat Mass Transf 54:1259–1267CrossRef
Zurück zum Zitat Zhao JJ, Huang M, Min Q, Christopher DM, Duan YY (2011b) Near-wall liquid layering, velocity slip and solid-liquid interfacial thermal resistance for thin film evaporation in microchannels. Nanoscale Microscale Thermophys Eng 15(2):105–122CrossRef Zhao JJ, Huang M, Min Q, Christopher DM, Duan YY (2011b) Near-wall liquid layering, velocity slip and solid-liquid interfacial thermal resistance for thin film evaporation in microchannels. Nanoscale Microscale Thermophys Eng 15(2):105–122CrossRef
Metadaten
Titel
Effect of nanofluids on thin film evaporation in microchannels
verfasst von
Jun-Jie Zhao
Yuan-Yuan Duan
Xiao-Dong Wang
Bu-Xuan Wang
Publikationsdatum
01.10.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-011-0484-y

Weitere Artikel der Ausgabe 10/2011

Journal of Nanoparticle Research 10/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.