Skip to main content

2021 | OriginalPaper | Buchkapitel

Effect of Natural Gas Blend Enrichment with Hydrogen on Laminar Burning Velocity and Flame Stability

verfasst von : A. R. Khan, M. R. Ravi, Anjan Ray

Erschienen in: Sustainable Development for Energy, Power, and Propulsion

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Present study deals with the effect of enrichment with H2 on the laminar burning velocity (LBV) and flame stability of various multicomponent NG–air mixtures. In the present work, constant pressure outwardly propagating spherical flame method is used to experimentally evaluate the LBV and burned gas Markstein length (Lb) of various fuel–air mixtures. The chemical kinetic analysis is performed with the help of CHEMKIN-PRO® simulation software by using various detailed chemical kinetics mechanisms. All the experiments and simulations are performed at an initial pressure and temperature of 0.1 MPa and 300 ± 3 K, respectively. The addition of H2 to NG blends increases the concentration of active radicals (H, O, and OH) in the reaction zone, and hence, enhances the combustion chemistry of the H2-enriched NG blend. The effect is most prominent for the NG6–H2 blend, which has the highest mole fraction of CH4. The addition H2 in the lean fuel–air mixtures reduces their Lewis number and thus may make the flames unstable. However, the NG5–H2 blend, which has the highest mole fraction of C3H8, maintains a positive Lb over a wider range of equivalence ratios (0.7–1.4). The predictions of LBV using GRI-MECH 3.0 is the closest to the experimental results for the blends with 75% H2 in the fuel when compared with those using San Diego and USC-II mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Law CK (2006) Combustion physics. Cambridge University Press, New YorkCrossRef Law CK (2006) Combustion physics. Cambridge University Press, New YorkCrossRef
3.
Zurück zum Zitat Lowry W, de Vries J, Krejci M, Petersen E, Serinyel Z, Metcalfe W, Curran H, Bourque G (2011) Laminar flame speed measurements and modeling of pure Alkanes and Alkane blends at elevated pressures. J Eng Gas Turbines Power 133:091501. https://doi.org/10.1115/1.4002809 Lowry W, de Vries J, Krejci M, Petersen E, Serinyel Z, Metcalfe W, Curran H, Bourque G (2011) Laminar flame speed measurements and modeling of pure Alkanes and Alkane blends at elevated pressures. J Eng Gas Turbines Power 133:091501. https://​doi.​org/​10.​1115/​1.​4002809
4.
Zurück zum Zitat Rallis CJ, Garforth AM (1980) The determination of laminar burning velocity. Prog Energ Combust Sci 6:303–329CrossRef Rallis CJ, Garforth AM (1980) The determination of laminar burning velocity. Prog Energ Combust Sci 6:303–329CrossRef
6.
Zurück zum Zitat Luo Y-R (2002) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton, London, New York, Washington, DCCrossRef Luo Y-R (2002) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton, London, New York, Washington, DCCrossRef
11.
Zurück zum Zitat CHEMKIN-PRO (2016) CHEMKIN 17.0 (15151), ANSYS reaction design, San Diego CHEMKIN-PRO (2016) CHEMKIN 17.0 (15151), ANSYS reaction design, San Diego
13.
Zurück zum Zitat Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK (2007) USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK (2007) USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds
15.
Zurück zum Zitat Bradley D, Hicks RA, Lawes M, Sheppard CGW, Woolley R (1998) The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust Flame 115:126–144. https://doi.org/10.1016/s0010-2180(97)00349-0 Bradley D, Hicks RA, Lawes M, Sheppard CGW, Woolley R (1998) The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust Flame 115:126–144. https://​doi.​org/​10.​1016/​s0010-2180(97)00349-0
17.
Zurück zum Zitat Systat Software, Inc. (2008) Sigma Plot, Version 11.0 Systat Software, Inc. (2008) Sigma Plot, Version 11.0
18.
Zurück zum Zitat Taylor SC (1991) Burning velocity and the influence of flame stretch Taylor SC (1991) Burning velocity and the influence of flame stretch
19.
Zurück zum Zitat Kelley AP, Bechtold JK, Law CK (2011) Propagation of confined premixed flames. In: 7th US national technical meeting of the combustion institute. Combustion Institute, Georgia Institute of Technology, Charlottesville, VA, pp 1–24 Kelley AP, Bechtold JK, Law CK (2011) Propagation of confined premixed flames. In: 7th US national technical meeting of the combustion institute. Combustion Institute, Georgia Institute of Technology, Charlottesville, VA, pp 1–24
20.
Zurück zum Zitat Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRef Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRef
26.
Zurück zum Zitat Seshadri K, Gottgens J (1991) Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Lect Notes Phys 111–136 Seshadri K, Gottgens J (1991) Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Lect Notes Phys 111–136
Metadaten
Titel
Effect of Natural Gas Blend Enrichment with Hydrogen on Laminar Burning Velocity and Flame Stability
verfasst von
A. R. Khan
M. R. Ravi
Anjan Ray
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5667-8_6