Skip to main content
Erschienen in: Tribology Letters 1/2011

01.07.2011 | Original Paper

Effect of Operating Conditions on Tribological Response of Al–Al Sliding Electrical Interface

verfasst von: Dinesh G. Bansal, Jeffrey L. Streator

Erschienen in: Tribology Letters | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum is widely used in electrical contacts due to its electrical properties and inexpensiveness when compared to copper. In this study, we investigate the influence of operating conditions like contact load (pressure), sliding speed, current, and surface roughness on the electrical and tribological behavior of the interface. The tests are conducted on a linear, pin-on-flat tribo-simulator specially designed to investigate electrical contacts under high contact pressures and high current densities. Control parameters include sliding speed, load, current, and surface roughness. The response of the interface is evaluated in the light of coefficient of friction, contact resistance, contact voltage, mass loss of pins, and interfacial temperature rise. As compared to sliding speed, load, and roughness, current is found to have the greatest influence on the various measured parameters. Under certain test conditions, the interface operates in a “voltage saturation” regime, wherein increase in current do not result in any increase in contact voltage. Within the voltage saturation regime the coefficient of friction tends to be lower, a result that is attributed to the higher temperatures associated with the higher voltage (and resulting material softening). Higher interfacial temperatures also appear to be responsible for the higher wear rates observed at higher current levels as well as lower coefficients of friction for smoother surfaces in the presence of current.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bond, N.T.: Aluminum contact surfaces in electrical transition interfaces. IEEE Trans. Parts Mater. Packag. 5, 104–111 (1969)CrossRef Bond, N.T.: Aluminum contact surfaces in electrical transition interfaces. IEEE Trans. Parts Mater. Packag. 5, 104–111 (1969)CrossRef
2.
Zurück zum Zitat Jackson, R.L.: Electrical performance of aluminum/copper bolted joints. IEE Proc. Gener. Transm. Distribution 129 (Part C), 177–184 (1982) Jackson, R.L.: Electrical performance of aluminum/copper bolted joints. IEE Proc. Gener. Transm. Distribution 129 (Part C), 177–184 (1982)
3.
Zurück zum Zitat Braunovic, M.: Fretting damage in tin-plated aluminum and copper connectors. IEEE Trans. Compon. Hybrids Manuf. Technol. 12, 215–223 (1989)CrossRef Braunovic, M.: Fretting damage in tin-plated aluminum and copper connectors. IEEE Trans. Compon. Hybrids Manuf. Technol. 12, 215–223 (1989)CrossRef
4.
Zurück zum Zitat Ben Jemaa, N., Carvou, E.: Electrical contact behaviour of power connector during fretting vibration. In: Proceedings of the Fifty-Second IEEE Holm Conference on Electrical Contacts (2006) Ben Jemaa, N., Carvou, E.: Electrical contact behaviour of power connector during fretting vibration. In: Proceedings of the Fifty-Second IEEE Holm Conference on Electrical Contacts (2006)
5.
Zurück zum Zitat McNab, I.R.: Advances in electrical current collection. Wear 78, 1–6 (1982)CrossRef McNab, I.R.: Advances in electrical current collection. Wear 78, 1–6 (1982)CrossRef
6.
Zurück zum Zitat Ma, X.C., He, G.Q., He, D.H., Chen, C.S., Hu, Z.F.: Sliding wear behavior of copper-graphite composite material for use in maglev transportation system. Wear 265, 1087–1092 (2008)CrossRef Ma, X.C., He, G.Q., He, D.H., Chen, C.S., Hu, Z.F.: Sliding wear behavior of copper-graphite composite material for use in maglev transportation system. Wear 265, 1087–1092 (2008)CrossRef
7.
Zurück zum Zitat Reichner, P.: Metallic brushes for extreme high-current applications. IEEE Trans. Compon. Hybrids Manuf. Technol. 3, 21–26 (1980)CrossRef Reichner, P.: Metallic brushes for extreme high-current applications. IEEE Trans. Compon. Hybrids Manuf. Technol. 3, 21–26 (1980)CrossRef
8.
Zurück zum Zitat Groth, K., Heidenfelder, F., Holinski, R.: Advancements of tribological performance of carbon brushes in electrical motors. Ind. Lubr. Tribol. 53, 5–10 (2001)CrossRef Groth, K., Heidenfelder, F., Holinski, R.: Advancements of tribological performance of carbon brushes in electrical motors. Ind. Lubr. Tribol. 53, 5–10 (2001)CrossRef
9.
Zurück zum Zitat Bonwitt, W.F.: An experimental investigation of the electrical performance of bolted aluminum-to-copper connections. Trans. Am. Inst. Electr. Eng. 67, 1208–1219 (1948)CrossRef Bonwitt, W.F.: An experimental investigation of the electrical performance of bolted aluminum-to-copper connections. Trans. Am. Inst. Electr. Eng. 67, 1208–1219 (1948)CrossRef
10.
Zurück zum Zitat Runde, M., Magnusson, N., Lenes, A.: Bolted connectors for stranded aluminum power conductors. IEEE Trans. Power Deliv. 23, 523–530 (2008)CrossRef Runde, M., Magnusson, N., Lenes, A.: Bolted connectors for stranded aluminum power conductors. IEEE Trans. Power Deliv. 23, 523–530 (2008)CrossRef
11.
Zurück zum Zitat Rabinowicz, E.: The temperature rise at sliding electrical contacts. Wear 78, 29–37 (1982)CrossRef Rabinowicz, E.: The temperature rise at sliding electrical contacts. Wear 78, 29–37 (1982)CrossRef
12.
Zurück zum Zitat Lawson, D.K., Dow, T.A.: Sparking and wear of high current density electrical brushes. Wear 102, 105–125 (1984)CrossRef Lawson, D.K., Dow, T.A.: Sparking and wear of high current density electrical brushes. Wear 102, 105–125 (1984)CrossRef
13.
Zurück zum Zitat Bansal, D.G., Streator, J.L.: Behavior of copper-aluminum tribological pair under high current densities. IEEE Trans. Magn. 45, 244–249 (2009)CrossRef Bansal, D.G., Streator, J.L.: Behavior of copper-aluminum tribological pair under high current densities. IEEE Trans. Magn. 45, 244–249 (2009)CrossRef
14.
Zurück zum Zitat Davidson, R.F., Cook, W.A., Rabern, D.A., Schnurr, N.M.: Predicting bore deformations and launcher stresses in railguns. IEEE Trans. Magn. MAG-22, 1435–1440 (1986)CrossRef Davidson, R.F., Cook, W.A., Rabern, D.A., Schnurr, N.M.: Predicting bore deformations and launcher stresses in railguns. IEEE Trans. Magn. MAG-22, 1435–1440 (1986)CrossRef
15.
Zurück zum Zitat Persad, C., Peterson, D.R.: High energy rate modification of surface layers of conductors. IEEE Trans. Magn. MAG-22, 1658–1661 (1986) Persad, C., Peterson, D.R.: High energy rate modification of surface layers of conductors. IEEE Trans. Magn. MAG-22, 1658–1661 (1986)
16.
Zurück zum Zitat Greenwood, J.A., Williamson, J.B.P.: Electrical conduction in solids II. Theory of temperature-dependent conductors. Proc. R. Soc. Lond. Ser. A 246, 13–31 (1958)CrossRef Greenwood, J.A., Williamson, J.B.P.: Electrical conduction in solids II. Theory of temperature-dependent conductors. Proc. R. Soc. Lond. Ser. A 246, 13–31 (1958)CrossRef
17.
Zurück zum Zitat Timsit, R.: Electrical contact resistance: fundamental principles. In: Electrical Contacts: Principles and Applications, pp. 1–88. Marcel Dekker, New York (1999) Timsit, R.: Electrical contact resistance: fundamental principles. In: Electrical Contacts: Principles and Applications, pp. 1–88. Marcel Dekker, New York (1999)
18.
Zurück zum Zitat ASM Specialty Handbook: Aluminum and Aluminum Alloys. ASM International, Materials Park, OH (1993) ASM Specialty Handbook: Aluminum and Aluminum Alloys. ASM International, Materials Park, OH (1993)
19.
Zurück zum Zitat Bansal, D.G., Streator, J. L.: Voltage saturation in electrical contacts. In: Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2009. American Society of Mechanical Engineers, New York (2009) Bansal, D.G., Streator, J. L.: Voltage saturation in electrical contacts. In: Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2009. American Society of Mechanical Engineers, New York (2009)
20.
Zurück zum Zitat Bansal, D.G., Streator, J.L.: Voltage saturation in electrical contacts via viscoplastic creep. Acta Mater. 59, 726–737 (2011)CrossRef Bansal, D.G., Streator, J.L.: Voltage saturation in electrical contacts via viscoplastic creep. Acta Mater. 59, 726–737 (2011)CrossRef
21.
Zurück zum Zitat Timsit, R.S.: Electrical contact resistance: properties of stationary interfaces. IEEE Trans. Compon. Packag. Technol. 22, 85–98 (1999)CrossRef Timsit, R.S.: Electrical contact resistance: properties of stationary interfaces. IEEE Trans. Compon. Packag. Technol. 22, 85–98 (1999)CrossRef
22.
Zurück zum Zitat Holm, R.: Electric Contacts: Theory and Applications, p. 482. Springer-Verlag, Berlin (1967) Holm, R.: Electric Contacts: Theory and Applications, p. 482. Springer-Verlag, Berlin (1967)
23.
Zurück zum Zitat Tabor, D.: The Hardness of Metals. Oxford University Press, Oxford (1951) Tabor, D.: The Hardness of Metals. Oxford University Press, Oxford (1951)
24.
Zurück zum Zitat McLean, D.: The physics of high temperature creep in metals. Rep. Prog. Phys. 29, 1–34 (1966)CrossRef McLean, D.: The physics of high temperature creep in metals. Rep. Prog. Phys. 29, 1–34 (1966)CrossRef
25.
Zurück zum Zitat Frost, H.J., Ashby, M.F.: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford, UK (1982) Frost, H.J., Ashby, M.F.: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford, UK (1982)
26.
Zurück zum Zitat Ueno, T., Kadono, K., Yamaguchi, S., Aoyagi, M., Tanaka, A., Morita, N.: Relationship between contact voltage drop and frictional coefficient under high-current sliding contact. IEEJ Trans. Electr. Electron. Eng. 5, 486–492 (2010)CrossRef Ueno, T., Kadono, K., Yamaguchi, S., Aoyagi, M., Tanaka, A., Morita, N.: Relationship between contact voltage drop and frictional coefficient under high-current sliding contact. IEEJ Trans. Electr. Electron. Eng. 5, 486–492 (2010)CrossRef
Metadaten
Titel
Effect of Operating Conditions on Tribological Response of Al–Al Sliding Electrical Interface
verfasst von
Dinesh G. Bansal
Jeffrey L. Streator
Publikationsdatum
01.07.2011
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2011
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-011-9784-8

Weitere Artikel der Ausgabe 1/2011

Tribology Letters 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.