Skip to main content
Erschienen in: Journal of Materials Science 14/2018

19.04.2018 | Polymers

Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA

verfasst von: Lu Bai, Xing Zhao, Rui-Ying Bao, Zheng-Ying Liu, Ming-Bo Yang, Wei Yang

Erschienen in: Journal of Materials Science | Ausgabe 14/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The crystallinity of semicrystalline polymers and molecular orientation of polymer have long been considered to be significant influencing factors on the thermal conductivity of polymer materials, but more clear-cut understanding on their impact on the thermal conductivity is still needed. In this work, poly-l-lactide (PLLA), whose crystallinity and orientation can be adjusted in a wide range, is selected to discuss the effect of degree of crystallinity and orientation on the thermal conductivity of PLLA. Meanwhile, the influence of temperature on the thermal conductivity is also discussed. PLLA compression-molded samples were heat-treated at 120 °C to tune the crystallinity of the samples, while the degrees of orientation were tuned by stretching the amorphous PLLA bars at 60 °C to different strains. It is found that environmental temperature of application affects the thermal conductivity obviously and the glass transition temperature of polymers shows a strong influence on the thermal conductivity of PLLA. Below Tg, the thermal conductivity of PLLA with different crystallinity increases with temperature and when the temperature is higher than Tg, the thermal conductivity of PLLA with different crystallinity decreases remarkably. It is also demonstrated that the thermal conductivity of PLLA increases with the increase in crystallinity, and the tensile strain linearly increases the thermal conductivity in the direction of molecular orientation and decreases the thermal conductivity in the perpendicular direction, which are in agreement with other semicrystalline polymers that has been reported.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
3.
Zurück zum Zitat Yang J, Zhang E, Li XF, Zhang Y, Qu J, Yu Z-Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57CrossRef Yang J, Zhang E, Li XF, Zhang Y, Qu J, Yu Z-Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57CrossRef
4.
Zurück zum Zitat Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Yang W, Xie BH, Yang MB (2016) Ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light-thermal-electric energy conversion. J Mater Chem A 4:18841–18851CrossRef Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Yang W, Xie BH, Yang MB (2016) Ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light-thermal-electric energy conversion. J Mater Chem A 4:18841–18851CrossRef
5.
Zurück zum Zitat Feng CP, Ni HY, Chen J, Yang W (2016) A facile method to fabricate highly conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8:19732–19738CrossRef Feng CP, Ni HY, Chen J, Yang W (2016) A facile method to fabricate highly conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8:19732–19738CrossRef
6.
Zurück zum Zitat Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Xie BH, Yang MB, Yang W (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells 174C:56–64CrossRef Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Xie BH, Yang MB, Yang W (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells 174C:56–64CrossRef
7.
Zurück zum Zitat Feng CP, Bai L, Bao RY, Liu ZY, Yang MB, Chen J, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1:160–167CrossRef Feng CP, Bai L, Bao RY, Liu ZY, Yang MB, Chen J, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1:160–167CrossRef
8.
Zurück zum Zitat Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef
9.
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef
10.
Zurück zum Zitat Shen X, Wang Z, Wu Y, Liu X, He YB, Kim JK (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16(6):3585–3593CrossRef Shen X, Wang Z, Wu Y, Liu X, He YB, Kim JK (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16(6):3585–3593CrossRef
11.
Zurück zum Zitat Noh YJ, Kim SY (2015) Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polym Test 45:132–138CrossRef Noh YJ, Kim SY (2015) Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polym Test 45:132–138CrossRef
12.
Zurück zum Zitat Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8:19984–19993CrossRef Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8:19984–19993CrossRef
13.
Zurück zum Zitat Zhang WB, Zhan ZX, Yang JH et al (2015) Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon 90:242–254CrossRef Zhang WB, Zhan ZX, Yang JH et al (2015) Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon 90:242–254CrossRef
14.
Zurück zum Zitat Yang J, Yu P, Tang LS, Bao RY, Liu ZY, Yang MB, Yang W (2017) Hierarchically well-ordered porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45):17704–17709CrossRef Yang J, Yu P, Tang LS, Bao RY, Liu ZY, Yang MB, Yang W (2017) Hierarchically well-ordered porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45):17704–17709CrossRef
15.
Zurück zum Zitat Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Yang W, Xie BH, Yang MB (2017) Largely enhanced thermal conductivity of polyethylene glycol/boron nitride composite phase change materials for solar–thermal–electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J 315:481–490CrossRef Yang J, Tang LS, Bao RY, Bai L, Liu ZY, Yang W, Xie BH, Yang MB (2017) Largely enhanced thermal conductivity of polyethylene glycol/boron nitride composite phase change materials for solar–thermal–electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J 315:481–490CrossRef
16.
Zurück zum Zitat Xiao YJ, Wang WY, Lin T, Chen XJ, Zhang YT, Yang JH, Wang Y, Zhou ZW (2016) Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J Phys Chem C 120:6344–6355CrossRef Xiao YJ, Wang WY, Lin T, Chen XJ, Zhang YT, Yang JH, Wang Y, Zhou ZW (2016) Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J Phys Chem C 120:6344–6355CrossRef
17.
Zurück zum Zitat Anderson DR (1966) Thermal conductivity of polymers. Chem Rev 1966:677–690CrossRef Anderson DR (1966) Thermal conductivity of polymers. Chem Rev 1966:677–690CrossRef
18.
Zurück zum Zitat Hansen D, Bernier GA (1972) Thermal-conductivity of polyethylene: effects of crystal size, density and orientation on thermal-conductivity. Polym Eng Sci 12:204–208CrossRef Hansen D, Bernier GA (1972) Thermal-conductivity of polyethylene: effects of crystal size, density and orientation on thermal-conductivity. Polym Eng Sci 12:204–208CrossRef
19.
Zurück zum Zitat Choy CL, Greig D (1975) Low-temperature thermal-conductivity of a semi-crystalline polymer, polyethylene terephthalate. J Phys C Solid State Phys 8:3121–3130CrossRef Choy CL, Greig D (1975) Low-temperature thermal-conductivity of a semi-crystalline polymer, polyethylene terephthalate. J Phys C Solid State Phys 8:3121–3130CrossRef
20.
Zurück zum Zitat Choy CL, Kwok KW, Leung WP, Lau FP (1994) Thermal-conductivity of poly(ether ether ketone) and its short-fiber composites. J Polym Sci Part B Polym Phys 32:1389–1397CrossRef Choy CL, Kwok KW, Leung WP, Lau FP (1994) Thermal-conductivity of poly(ether ether ketone) and its short-fiber composites. J Polym Sci Part B Polym Phys 32:1389–1397CrossRef
21.
Zurück zum Zitat Yu J, Sundqvist B, Tonpheng B, Andersson O (2014) Thermal conductivity of highly crystallized polyethylene. Polymer 55:195–200CrossRef Yu J, Sundqvist B, Tonpheng B, Andersson O (2014) Thermal conductivity of highly crystallized polyethylene. Polymer 55:195–200CrossRef
22.
Zurück zum Zitat Kurabayashi K (2001) Anisotropic thermal properties of solid polymers. Int J Thermophys 22:277–288CrossRef Kurabayashi K (2001) Anisotropic thermal properties of solid polymers. Int J Thermophys 22:277–288CrossRef
23.
Zurück zum Zitat Choy CL, Luk WH, Chen FC (1978) Thermal-conductivity of highly oriented polyethylene. Polymer 19:155–162CrossRef Choy CL, Luk WH, Chen FC (1978) Thermal-conductivity of highly oriented polyethylene. Polymer 19:155–162CrossRef
24.
Zurück zum Zitat Kanamoto T, Tsuruta A, Tanaka K, Takeda M, Porter RS (1988) Superdrawing of ultrahigh molecular-weight polyethylene 1 effect of techniques on drawing of single-crystal mats. Macromolecules 21:470–477CrossRef Kanamoto T, Tsuruta A, Tanaka K, Takeda M, Porter RS (1988) Superdrawing of ultrahigh molecular-weight polyethylene 1 effect of techniques on drawing of single-crystal mats. Macromolecules 21:470–477CrossRef
25.
Zurück zum Zitat Anandakumaran K, Roy SK, Manley RS (1988) Drawing-induced changes in the properties of polyethylene fibers prepared by gelation crystallization. Macromolecules 21:1746–1751CrossRef Anandakumaran K, Roy SK, Manley RS (1988) Drawing-induced changes in the properties of polyethylene fibers prepared by gelation crystallization. Macromolecules 21:1746–1751CrossRef
26.
Zurück zum Zitat Choy CL, Fei Y, Xi TG (1993) Thermal-conductivity of gel-spun polyethylene fibers. J Polym Sci Part B Polym Phys 31:365–370CrossRef Choy CL, Fei Y, Xi TG (1993) Thermal-conductivity of gel-spun polyethylene fibers. J Polym Sci Part B Polym Phys 31:365–370CrossRef
27.
Zurück zum Zitat Mergenthaler DB, Pietralla M, Roy S, Kilian HG (1992) Thermal-conductivity in ultraoriented polyethylene. Macromolecules 25:3500–3502CrossRef Mergenthaler DB, Pietralla M, Roy S, Kilian HG (1992) Thermal-conductivity in ultraoriented polyethylene. Macromolecules 25:3500–3502CrossRef
28.
Zurück zum Zitat Saeidijavash M, Garg J, Grady B, Smith B, Li Z, Young RJ, Tarannum F, Bel Bekri N (2017) High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale 9:12867–12873CrossRef Saeidijavash M, Garg J, Grady B, Smith B, Li Z, Young RJ, Tarannum F, Bel Bekri N (2017) High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale 9:12867–12873CrossRef
29.
Zurück zum Zitat Choy CL, Chen FC, Luk WH (1980) Thermal-conductivity of oriented crystalline polymers. J Polym Sci Part B Polym Phys 18:1187–1207CrossRef Choy CL, Chen FC, Luk WH (1980) Thermal-conductivity of oriented crystalline polymers. J Polym Sci Part B Polym Phys 18:1187–1207CrossRef
30.
Zurück zum Zitat Hennig J (1967) Anisotropy and structure in uniaxially stretched amorphous high polymers. J Polym Sci Part C Polym Symp 16:2751–2761CrossRef Hennig J (1967) Anisotropy and structure in uniaxially stretched amorphous high polymers. J Polym Sci Part C Polym Symp 16:2751–2761CrossRef
31.
Zurück zum Zitat Choy CL (1977) Thermal-conductivity of polymers. Polymer 18:984–1004CrossRef Choy CL (1977) Thermal-conductivity of polymers. Polymer 18:984–1004CrossRef
32.
Zurück zum Zitat Washo BD, Hansen D (1969) Heat conduction in linear amorphous high polymers-orientation anisotropy. J Appl Phys 40:2423–2427CrossRef Washo BD, Hansen D (1969) Heat conduction in linear amorphous high polymers-orientation anisotropy. J Appl Phys 40:2423–2427CrossRef
33.
Zurück zum Zitat Algaer EA, Alaghemandi M, Boehm MC, Mueller-Plathe F (2009) Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations. J Phys Chem B 113:14596–14603CrossRef Algaer EA, Alaghemandi M, Boehm MC, Mueller-Plathe F (2009) Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations. J Phys Chem B 113:14596–14603CrossRef
34.
Zurück zum Zitat Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, McMenamin SA, Lv W, Resler DP, Gattuso TR, Altman DH, Sandhage KH, Shi L, Henry A, Cola BA (2014) High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol 9:384–390CrossRef Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, McMenamin SA, Lv W, Resler DP, Gattuso TR, Altman DH, Sandhage KH, Shi L, Henry A, Cola BA (2014) High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol 9:384–390CrossRef
35.
Zurück zum Zitat Lu C, Chiang SW, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F (2017) Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115:52–59CrossRef Lu C, Chiang SW, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F (2017) Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115:52–59CrossRef
36.
Zurück zum Zitat Takagi H, Kako S, Kusano K, Ousaka A (2007) Thermal conductivity of PLA-bamboo fiber composites. Adv Compos Mater 16:377–384CrossRef Takagi H, Kako S, Kusano K, Ousaka A (2007) Thermal conductivity of PLA-bamboo fiber composites. Adv Compos Mater 16:377–384CrossRef
39.
Zurück zum Zitat Huang J, Zhu Y, Xu L, Chen J, Jiang W, Nie X (2016) Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Compos Sci Technol 129:160–165CrossRef Huang J, Zhu Y, Xu L, Chen J, Jiang W, Nie X (2016) Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Compos Sci Technol 129:160–165CrossRef
40.
Zurück zum Zitat Mosanenzadeh SG, Khalid S, Cui Y, Naguib HE (2016) High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene nanoplatelets. Polym Compos 37:2196–2205CrossRef Mosanenzadeh SG, Khalid S, Cui Y, Naguib HE (2016) High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene nanoplatelets. Polym Compos 37:2196–2205CrossRef
41.
Zurück zum Zitat Lebedev SM, Gefle OS, Amitov ET, Berchuk DY, Zhuravlev DV (2017) Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization. Polym Test 58:241–248CrossRef Lebedev SM, Gefle OS, Amitov ET, Berchuk DY, Zhuravlev DV (2017) Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization. Polym Test 58:241–248CrossRef
43.
Zurück zum Zitat Li L, Cao ZQ, Bao RY, Xie BH, Yang MB, Yang W (2017) Poly(l-lactic acid)-polyethylene glycol-poly(l-lactic acid) triblock copolymer: a novel macromolecular plasticizer to enhance the crystallization of poly(l-lactic acid). Eur Polym J 97:272–281CrossRef Li L, Cao ZQ, Bao RY, Xie BH, Yang MB, Yang W (2017) Poly(l-lactic acid)-polyethylene glycol-poly(l-lactic acid) triblock copolymer: a novel macromolecular plasticizer to enhance the crystallization of poly(l-lactic acid). Eur Polym J 97:272–281CrossRef
44.
Zurück zum Zitat Meng XT, Bocharova V, Tekinalp H, Cheng SW, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocellulose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139(5):188–197CrossRef Meng XT, Bocharova V, Tekinalp H, Cheng SW, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocellulose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139(5):188–197CrossRef
45.
Zurück zum Zitat Bao RY, Yang W, Jiang WR, Liu ZY, Xie BH, Yang MB (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674CrossRef Bao RY, Yang W, Jiang WR, Liu ZY, Xie BH, Yang MB (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674CrossRef
46.
Zurück zum Zitat Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE (2005) The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials 26:5771–5782CrossRef Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE (2005) The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials 26:5771–5782CrossRef
47.
Zurück zum Zitat Zhang L, Zhang W, Cai G, Fu X (2012) Study on the thermal property parameters of PLA. China Plast Ind 40:68–71 Zhang L, Zhang W, Cai G, Fu X (2012) Study on the thermal property parameters of PLA. China Plast Ind 40:68–71
48.
Zurück zum Zitat dos Santos WN, de Sousa JA, Gregorio R Jr (2013) Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 32:987–994CrossRef dos Santos WN, de Sousa JA, Gregorio R Jr (2013) Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 32:987–994CrossRef
49.
Zurück zum Zitat Zarandi MB, Bioki HA, Mirbagheri ZA, Tabbakh F, Mirjalili G (2012) Effect of crystallinity and irradiation on thermal properties and specific heat capacity of LDPE & LDPE/EVA. Appl Radiat Isot 70:1–5CrossRef Zarandi MB, Bioki HA, Mirbagheri ZA, Tabbakh F, Mirjalili G (2012) Effect of crystallinity and irradiation on thermal properties and specific heat capacity of LDPE & LDPE/EVA. Appl Radiat Isot 70:1–5CrossRef
Metadaten
Titel
Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA
verfasst von
Lu Bai
Xing Zhao
Rui-Ying Bao
Zheng-Ying Liu
Ming-Bo Yang
Wei Yang
Publikationsdatum
19.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2306-4

Weitere Artikel der Ausgabe 14/2018

Journal of Materials Science 14/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.