Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2019

02.12.2019 | SMST2019

Effect of Temperature on the Fracture Toughness of a NiTiHf High Temperature Shape Memory Alloy

verfasst von: B. Young, B. Haghgouyan, D. C. Lagoudas, I. Karaman

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fracture toughness of Ni50.3Ti29.7Hf20 high temperature shape memory alloy was systematically investigated as a function of temperature. A set of nominally isothermal fracture toughness tests were conducted on disk-shaped compact tension specimens at five temperatures corresponding to three thermodynamical conditions: (i) below martensite finish temperature to obtain the fracture toughness of martensite (ii) above martensite start temperature in austenite but below the martensite desist temperature (Md, the temperature above which the austenite does not transform), in order to find the fracture toughness when stress induced martensitic (SIM) transformation takes place close to the crack tip, and (iii) above Md, in order to obtain the fracture toughness of austenite. The extent of the inelastic zone near the crack tip was detected using digital image correlation, and the fracture surfaces were examined. The fracture behavior was highly temperature/phase dependent. The fracture toughness of the transforming material was higher than that of austenite and martensite, i.e. SIM transformation acts as a toughening mechanism. This was attributed to the differences in strain hardening behavior in detwinning, martensitic transformation, and plastic deformation regimes of the stress–strain response, where SIM transformation occurs with the lowest strain hardening rate. The fracture toughness values obtained here are lower than those of equiatomic NiTi.
Literatur
1.
Zurück zum Zitat Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, Berlin Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, Berlin
2.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552CrossRef
3.
Zurück zum Zitat Tobushi H, Kimura K, Iwanaga H, Cahoon JR (1990) Basic research on shape memory alloy heat engine (output power characteristics and problems in development). JSME Int J 33:263–268 Tobushi H, Kimura K, Iwanaga H, Cahoon JR (1990) Basic research on shape memory alloy heat engine (output power characteristics and problems in development). JSME Int J 33:263–268
4.
Zurück zum Zitat Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef
5.
Zurück zum Zitat Umale T, Salas D, Tomes B, Arroyave R, Karaman I (2019) The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scr Mater 161:78–83CrossRef Umale T, Salas D, Tomes B, Arroyave R, Karaman I (2019) The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scr Mater 161:78–83CrossRef
6.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
7.
Zurück zum Zitat Benafan O, Noebe RD, Padula SA, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni29.7-Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans A 43(12):4539–4552CrossRef Benafan O, Noebe RD, Padula SA, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni29.7-Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans A 43(12):4539–4552CrossRef
8.
Zurück zum Zitat Saghaian SM, Karaca HE, Tobe H, Souri M, Noebe R, Chumlyakov YI (2015) Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater 87:128–141CrossRef Saghaian SM, Karaca HE, Tobe H, Souri M, Noebe R, Chumlyakov YI (2015) Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater 87:128–141CrossRef
9.
Zurück zum Zitat Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRef Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRef
10.
Zurück zum Zitat Evirgen A (2014) Microstructural characterization and shape memory response of Ni-Rich NiTiHf and NiTiZr high temperature shape memory alloys. Doctoral Dissertation, Texas A&M University Evirgen A (2014) Microstructural characterization and shape memory response of Ni-Rich NiTiHf and NiTiZr high temperature shape memory alloys. Doctoral Dissertation, Texas A&M University
11.
Zurück zum Zitat Belbasi M, Salehi MT (2014) Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy. J Mater Eng Perform 23(7):2368–2372CrossRef Belbasi M, Salehi MT (2014) Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy. J Mater Eng Perform 23(7):2368–2372CrossRef
12.
Zurück zum Zitat Bigelow GS, Garg A, Padula SA, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr Mater 64(8):725–728CrossRef Bigelow GS, Garg A, Padula SA, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr Mater 64(8):725–728CrossRef
13.
Zurück zum Zitat Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-Phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr high-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92CrossRef Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-Phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr high-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92CrossRef
14.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRef
15.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater 83:48–60CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater 83:48–60CrossRef
16.
Zurück zum Zitat Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69(5):354–357CrossRef Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69(5):354–357CrossRef
17.
Zurück zum Zitat Evirgen A, Basner F, Karaman I, Noebe RD, Pons J, Santamarta R (2012) Effect of aging on the martensitic transformation characteristics of a Ni-rich NiTiHf high temperature shape memory alloy. Funct Mater Lett 5(4):1250038CrossRef Evirgen A, Basner F, Karaman I, Noebe RD, Pons J, Santamarta R (2012) Effect of aging on the martensitic transformation characteristics of a Ni-rich NiTiHf high temperature shape memory alloy. Funct Mater Lett 5(4):1250038CrossRef
18.
Zurück zum Zitat Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef
19.
Zurück zum Zitat Saghaian SM, Karaca HE, Souri M, Turabi AS, Noebe RD (2010) Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater Des 101:340–345CrossRef Saghaian SM, Karaca HE, Souri M, Turabi AS, Noebe RD (2010) Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater Des 101:340–345CrossRef
20.
Zurück zum Zitat Shukla D, Noebe RD, Stebner AP (2013) Empirical study of the multiaxial, thermomechanical behavior of NiTiHf shape memory alloys, vol NASA/TM-20130216619. NASA, Cleveland, OH Shukla D, Noebe RD, Stebner AP (2013) Empirical study of the multiaxial, thermomechanical behavior of NiTiHf shape memory alloys, vol NASA/TM-20130216619. NASA, Cleveland, OH
21.
Zurück zum Zitat Benafan O (2012) Deformation and phase transformation processes in polycrystalline NiTi and NiTiHf high temperature shape memory alloys. Doctoral Dissertation, University of Central Florida Benafan O (2012) Deformation and phase transformation processes in polycrystalline NiTi and NiTiHf high temperature shape memory alloys. Doctoral Dissertation, University of Central Florida
22.
Zurück zum Zitat Hayrettin C (2017) Actuation fatigue and fracture of shape memory alloys. Doctoral Dissertation, Texas A&M University Hayrettin C (2017) Actuation fatigue and fracture of shape memory alloys. Doctoral Dissertation, Texas A&M University
23.
Zurück zum Zitat Karakoc O, Demblon A, Wheeler RW, Lagoudas DC, Karaman I (2019) Effects of testing parameters on the fatigue performance NiTiHf high temperature shape memory alloys. In: AIAA Scitech 2019 Forum, 2019, p 0416 Karakoc O, Demblon A, Wheeler RW, Lagoudas DC, Karaman I (2019) Effects of testing parameters on the fatigue performance NiTiHf high temperature shape memory alloys. In: AIAA Scitech 2019 Forum, 2019, p 0416
24.
Zurück zum Zitat Karakoc O, Hayrettin C, Canadinc D, Karaman I (2018) Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Mater 153:156–168CrossRef Karakoc O, Hayrettin C, Canadinc D, Karaman I (2018) Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Mater 153:156–168CrossRef
25.
Zurück zum Zitat Karakoc O, Hayrettin C, Evirgen A, Santamarta R, Canadinc D, Wheeler RW, Wang SJ, Lagoudas DC, Karaman I (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRef Karakoc O, Hayrettin C, Evirgen A, Santamarta R, Canadinc D, Wheeler RW, Wang SJ, Lagoudas DC, Karaman I (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRef
26.
Zurück zum Zitat Hayrettin C, Karakoc O, Karaman I, Mabe JH, Santamarta R, Pons J (2019) Two way shape memory effect in NiTiHf high temperature shape memory alloy tubes. Acta Mater 163:1–13CrossRef Hayrettin C, Karakoc O, Karaman I, Mabe JH, Santamarta R, Pons J (2019) Two way shape memory effect in NiTiHf high temperature shape memory alloy tubes. Acta Mater 163:1–13CrossRef
27.
Zurück zum Zitat Russell SM, Sczerzenie F (1994) Engineering considerations in the application of NiTiHf and NiAI as practical high-temperature shape memory alloys. MRS Proc 360:455CrossRef Russell SM, Sczerzenie F (1994) Engineering considerations in the application of NiTiHf and NiAI as practical high-temperature shape memory alloys. MRS Proc 360:455CrossRef
28.
Zurück zum Zitat Babacan N, Bilal M, Hayrettin C, Liu J, Benafan O, Karaman I (2018) Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Mater 157:228–244CrossRef Babacan N, Bilal M, Hayrettin C, Liu J, Benafan O, Karaman I (2018) Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Mater 157:228–244CrossRef
29.
Zurück zum Zitat Kockar B, Karaman I, Kim JI, Chumlyakov Y (2006) A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr Mater 54(12):2203–2208CrossRef Kockar B, Karaman I, Kim JI, Chumlyakov Y (2006) A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr Mater 54(12):2203–2208CrossRef
30.
Zurück zum Zitat Moholt M, Benafan O (2017) Spanwise Adaptive Wing. Presented at the 3rd Annual Convergent Aeronautics Solutions Showcase and Innovation Faire, VA Moholt M, Benafan O (2017) Spanwise Adaptive Wing. Presented at the 3rd Annual Convergent Aeronautics Solutions Showcase and Innovation Faire, VA
31.
Zurück zum Zitat Holtz RL, Sadananda K, Imam MA (1999) Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature. Int J Fatigue 21:S137–S145CrossRef Holtz RL, Sadananda K, Imam MA (1999) Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature. Int J Fatigue 21:S137–S145CrossRef
32.
Zurück zum Zitat Robertson SW, Ritchie RO (2007) In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709CrossRef Robertson SW, Ritchie RO (2007) In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709CrossRef
33.
Zurück zum Zitat Daly S, Miller A, Ravichandran G, Bhattacharya K (2007) An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55(18):6322–6330CrossRef Daly S, Miller A, Ravichandran G, Bhattacharya K (2007) An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55(18):6322–6330CrossRef
34.
Zurück zum Zitat Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57(4):1015–1025CrossRef Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57(4):1015–1025CrossRef
35.
Zurück zum Zitat Ahadi A, Sun Q (2016) Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scr Mater 113:171–175CrossRef Ahadi A, Sun Q (2016) Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scr Mater 113:171–175CrossRef
36.
Zurück zum Zitat Katanchi B, Choupani N, Khalil-Allafi J, Tavangar R, Baghani M (2018) Mixed-mode fracture of a superelastic NiTi alloy: experimental and numerical investigations. Eng Fract Mech 190:273–287CrossRef Katanchi B, Choupani N, Khalil-Allafi J, Tavangar R, Baghani M (2018) Mixed-mode fracture of a superelastic NiTi alloy: experimental and numerical investigations. Eng Fract Mech 190:273–287CrossRef
37.
Zurück zum Zitat Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–37CrossRef Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–37CrossRef
38.
Zurück zum Zitat Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue Fract Eng Mater Struct 36(9):903–912CrossRef Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue Fract Eng Mater Struct 36(9):903–912CrossRef
39.
Zurück zum Zitat Melton KN, Mercier O (1981) The mechanical properties of NiTi-based shape memory alloys. Acta Metall 29(2):393–398CrossRef Melton KN, Mercier O (1981) The mechanical properties of NiTi-based shape memory alloys. Acta Metall 29(2):393–398CrossRef
40.
Zurück zum Zitat Robertson SW, Ritchie RO (2008) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube. J Biomed Mater Res Part B 84B(1):26–33CrossRef Robertson SW, Ritchie RO (2008) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube. J Biomed Mater Res Part B 84B(1):26–33CrossRef
41.
Zurück zum Zitat Luo J, He J, Wan X, Dong T, Cui Y, Xiong X (2016) Fracture properties of polycrystalline NiTi shape memory alloy. Mater Sci Eng A 653:122–128CrossRef Luo J, He J, Wan X, Dong T, Cui Y, Xiong X (2016) Fracture properties of polycrystalline NiTi shape memory alloy. Mater Sci Eng A 653:122–128CrossRef
42.
Zurück zum Zitat ASTM Standard E399 (2011) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. ASTM International, West Conshohocken, PA ASTM Standard E399 (2011) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. ASTM International, West Conshohocken, PA
43.
Zurück zum Zitat Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRef Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRef
44.
Zurück zum Zitat Baxevanis T, Lagoudas D (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175(2):151–166CrossRef Baxevanis T, Lagoudas D (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175(2):151–166CrossRef
45.
Zurück zum Zitat Falvo A, Furgiuele F, Leonardi A, Maletta C (2009) Stress-induced martensitic transformation in the crack tip region of a NiTi alloy. J Mater Eng Perform 18(5):679–685CrossRef Falvo A, Furgiuele F, Leonardi A, Maletta C (2009) Stress-induced martensitic transformation in the crack tip region of a NiTi alloy. J Mater Eng Perform 18(5):679–685CrossRef
46.
Zurück zum Zitat Haghgouyan B, Jape S, Baxevanis T, Karaman I, Lagoudas DC (2019) Stable crack growth in NiTi shape memory alloys: 3D finite element modeling and experimental validation. Smart Mater Struct 28(6):064001CrossRef Haghgouyan B, Jape S, Baxevanis T, Karaman I, Lagoudas DC (2019) Stable crack growth in NiTi shape memory alloys: 3D finite element modeling and experimental validation. Smart Mater Struct 28(6):064001CrossRef
47.
Zurück zum Zitat Haghgouyan B, Karaman I, Jape S, Solomou A, Lagoudas DC (2018) Crack growth behavior in NiTi shape memory alloys under mode-I isothermal loading: effect of stress state. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems: V002T02A013-V002T02A013 Haghgouyan B, Karaman I, Jape S, Solomou A, Lagoudas DC (2018) Crack growth behavior in NiTi shape memory alloys under mode-I isothermal loading: effect of stress state. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems: V002T02A013-V002T02A013
48.
Zurück zum Zitat Jape S, Baxevanis T, Lagoudas DC (2016) Stable crack growth during thermal actuation of shape memory alloys. Shape Mem Superelast 2(1):104–113CrossRef Jape S, Baxevanis T, Lagoudas DC (2016) Stable crack growth during thermal actuation of shape memory alloys. Shape Mem Superelast 2(1):104–113CrossRef
49.
Zurück zum Zitat Sgambitterra E, Maletta C, Furgiuele F, Sehitoglu H (2018) Fatigue crack propagation in [0 1 2] NiTi single crystal alloy. Int J Fatigue 112:9–20CrossRef Sgambitterra E, Maletta C, Furgiuele F, Sehitoglu H (2018) Fatigue crack propagation in [0 1 2] NiTi single crystal alloy. Int J Fatigue 112:9–20CrossRef
50.
Zurück zum Zitat Sgambitterra E, Maletta C, Magarò P, Renzo D, Furgiuele F, Sehitoglu H (2019) Effects of temperature on fatigue crack propagation in pseudoelastic NiTi shape memory alloys. Shape Memory Superelast Sgambitterra E, Maletta C, Magarò P, Renzo D, Furgiuele F, Sehitoglu H (2019) Effects of temperature on fatigue crack propagation in pseudoelastic NiTi shape memory alloys. Shape Memory Superelast
51.
Zurück zum Zitat Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–Towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRef Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–Towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRef
52.
Zurück zum Zitat ASTM Standard E1820 (2014) Standard Test Method for Measurement of Fracture Toughness. ASTM International, West Conshohocken, PA ASTM Standard E1820 (2014) Standard Test Method for Measurement of Fracture Toughness. ASTM International, West Conshohocken, PA
53.
Zurück zum Zitat Haghgouyan B, Shafaghi N, Aydıner CC, Anlas G (2016) Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA. Smart Mater Struct 25(7):075010CrossRef Haghgouyan B, Shafaghi N, Aydıner CC, Anlas G (2016) Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA. Smart Mater Struct 25(7):075010CrossRef
54.
Zurück zum Zitat Maletta C, Sgambitterra E, Niccoli F (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6(1):17CrossRef Maletta C, Sgambitterra E, Niccoli F (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6(1):17CrossRef
55.
Zurück zum Zitat Haghgouyan B, Young B, Karaman I, Lagoudas DC (2019) Fracture toughness of martensitic NiTiHf high-temperature shape memory alloy. Behavior and Mechanics of Multifunctional Materials XIII. 10968:109680A Haghgouyan B, Young B, Karaman I, Lagoudas DC (2019) Fracture toughness of martensitic NiTiHf high-temperature shape memory alloy. Behavior and Mechanics of Multifunctional Materials XIII. 10968:109680A
56.
Zurück zum Zitat Amin-Ahmadi B, Noebe RD, Stebner AP (2019) Crack propagation mechanisms of an aged nickel-titanium-hafnium shape memory alloy. Scr Mater 159:85–88CrossRef Amin-Ahmadi B, Noebe RD, Stebner AP (2019) Crack propagation mechanisms of an aged nickel-titanium-hafnium shape memory alloy. Scr Mater 159:85–88CrossRef
57.
Zurück zum Zitat Chen Y, Tyc O, Molnárová O, Heller L, Šittner P (2019) Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges. Shape Mem Superelast 5(1):42–62CrossRef Chen Y, Tyc O, Molnárová O, Heller L, Šittner P (2019) Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges. Shape Mem Superelast 5(1):42–62CrossRef
58.
Zurück zum Zitat Paul PP, Fortman M, Paranjape HM, Anderson PM, Stebner AP, Brinson LC (2018) Influence of structure and microstructure on deformation localization and crack growth in NiTi shape memory alloys. Shape Mem Superelast 4(2):285–293CrossRef Paul PP, Fortman M, Paranjape HM, Anderson PM, Stebner AP, Brinson LC (2018) Influence of structure and microstructure on deformation localization and crack growth in NiTi shape memory alloys. Shape Mem Superelast 4(2):285–293CrossRef
59.
Zurück zum Zitat Santamarta R, Evirgen A, Perez-Sierra AM, Pons J, Cesari E, Karaman I, Noebe RD (2015) Effect of thermal treatments on Ni–Mn–Ga and Ni-Rich Ni–Ti–Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428CrossRef Santamarta R, Evirgen A, Perez-Sierra AM, Pons J, Cesari E, Karaman I, Noebe RD (2015) Effect of thermal treatments on Ni–Mn–Ga and Ni-Rich Ni–Ti–Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428CrossRef
60.
Zurück zum Zitat Gall K, Yang N, Sehitoglu H, Chumlyakov YI (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109(2):189–207CrossRef Gall K, Yang N, Sehitoglu H, Chumlyakov YI (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109(2):189–207CrossRef
61.
Zurück zum Zitat Robertson SW, Mehta A, Pelton AR, Ritchie RO (2007) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55(18):6198–6207CrossRef Robertson SW, Mehta A, Pelton AR, Ritchie RO (2007) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55(18):6198–6207CrossRef
62.
Zurück zum Zitat Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61(19):7422–7431CrossRef Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61(19):7422–7431CrossRef
63.
Zurück zum Zitat Benafan O, Garg A, Noebe RD, Bigelow GS, Padula SA, Gaydosh DJ, Schell N, Mabe JH, Vaidyanathan R (2014) Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy. Intermetallics 50:94–107CrossRef Benafan O, Garg A, Noebe RD, Bigelow GS, Padula SA, Gaydosh DJ, Schell N, Mabe JH, Vaidyanathan R (2014) Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy. Intermetallics 50:94–107CrossRef
64.
Zurück zum Zitat Surikova NS, Chumlyakov YI (2000) Mechanisms of plastic deformation of the titanium nickelide single crystals. Phys Metals Metallogr 89(2):196–205 Surikova NS, Chumlyakov YI (2000) Mechanisms of plastic deformation of the titanium nickelide single crystals. Phys Metals Metallogr 89(2):196–205
65.
Zurück zum Zitat Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier HJ, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48(13):3311–3326CrossRef Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier HJ, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48(13):3311–3326CrossRef
66.
Zurück zum Zitat Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I, Chumlyakov Y, Maier HJ (2003) Detwinning in NiTi alloys. Metall Mater Trans A 34(1):5–13CrossRef Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I, Chumlyakov Y, Maier HJ (2003) Detwinning in NiTi alloys. Metall Mater Trans A 34(1):5–13CrossRef
67.
Zurück zum Zitat Chumlyakov YI, Kireeva IV, Panchenko EY, Timofeeva EE, Pobedennaya ZV, Chusov SV, Karaman I, Maier H, Cesari E, Kirillov VA (2008) High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51(10):1016–1036CrossRef Chumlyakov YI, Kireeva IV, Panchenko EY, Timofeeva EE, Pobedennaya ZV, Chusov SV, Karaman I, Maier H, Cesari E, Kirillov VA (2008) High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51(10):1016–1036CrossRef
68.
Zurück zum Zitat Benafan O, Gaydosh DJ (2017) High temperature shape memory alloy Ni50.3Ti29.7Hf20 torque tube actuators. Smart Mater Struct 26(9):095002CrossRef Benafan O, Gaydosh DJ (2017) High temperature shape memory alloy Ni50.3Ti29.7Hf20 torque tube actuators. Smart Mater Struct 26(9):095002CrossRef
69.
Zurück zum Zitat Benafan O, Gaydosh DJ (2018) Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes. Smart Mater Struct 27(7):075035CrossRef Benafan O, Gaydosh DJ (2018) Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes. Smart Mater Struct 27(7):075035CrossRef
70.
Zurück zum Zitat Makkar J, Baxevanis T (2019) Notes on the experimental measurement of fracture toughness of shape memory alloys. J Intell Mater Syst Struct 1-9 Makkar J, Baxevanis T (2019) Notes on the experimental measurement of fracture toughness of shape memory alloys. J Intell Mater Syst Struct 1-9
Metadaten
Titel
Effect of Temperature on the Fracture Toughness of a NiTiHf High Temperature Shape Memory Alloy
verfasst von
B. Young
B. Haghgouyan
D. C. Lagoudas
I. Karaman
Publikationsdatum
02.12.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-019-00245-2

Weitere Artikel der Ausgabe 4/2019

Shape Memory and Superelasticity 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.