Skip to main content
Erschienen in: Glass and Ceramics 3-4/2018

16.07.2018 | AT ENTERPRISES AND INSTITUTES

Effect of the Ratio SiO2/Al2O3 on the Structure, Properties, and Thermal Stability of Geopolymer Refractory Materials

verfasst von: L. Dembovska, I. Pundiene, D. Bajare, G. Bumanis

Erschienen in: Glass and Ceramics | Ausgabe 3-4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The properties of lightweight geopolymer materials (GM) based on refractory technogenic aluminosilicate wastes were studied. The effect of the ratio of the oxides SiO2 and Al2O3 in the compositions of GM on the physical and mechanical properties of GM was investigated. It was found that SiO2/Al2O3 reduction in the GM composition results in higher density and strength and lower water absorption of the samples after a keeping period. After firing at temperatures 800 and 1000°C the strength of the samples becomes all the higher the lower the ratio SiO2/Al2O3 in the composition. The heat resistance of the samples comprises four thermal cycles for high and more than seven cycles low ratio SiO2/Al2O3.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Davidovitz, Geopolymer: Chemistry and Applications, Institute Geopolymer, Saint-Quentin (2008). J. Davidovitz, Geopolymer: Chemistry and Applications, Institute Geopolymer, Saint-Quentin (2008).
2.
Zurück zum Zitat V. I. Korneev and A. S. Brykov, “Prospects for the development of general building binding materials: Geopolymers and their distinctive features,” Tsement i Ego Primenenie, March – April (2010), pp. 51 – 55. V. I. Korneev and A. S. Brykov, “Prospects for the development of general building binding materials: Geopolymers and their distinctive features,” Tsement i Ego Primenenie, March – April (2010), pp. 51 – 55.
3.
Zurück zum Zitat P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007). P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).
4.
Zurück zum Zitat Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).CrossRef Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).CrossRef
5.
Zurück zum Zitat L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).CrossRef L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).CrossRef
6.
Zurück zum Zitat Á. Palomo, S. Alonso, A. Fernandez-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004). Á. Palomo, S. Alonso, A. Fernandez-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).
7.
Zurück zum Zitat A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Microporous Mesoporous Mater. 91(1 – 3), 111 – 119 (2006).CrossRef A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Microporous Mesoporous Mater. 91(1 – 3), 111 – 119 (2006).CrossRef
8.
Zurück zum Zitat T. Bakharev, “Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing,” Cement Concrete Res., 36(6), 1134 – 1147 (2006).CrossRef T. Bakharev, “Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing,” Cement Concrete Res., 36(6), 1134 – 1147 (2006).CrossRef
9.
Zurück zum Zitat R. E. Lyon, P. N. Balaguru, A. Foden, et al., “Fire-resistant aluminosilicate composites,” Fire and Mater., 4, 67 – 73 (1997).CrossRef R. E. Lyon, P. N. Balaguru, A. Foden, et al., “Fire-resistant aluminosilicate composites,” Fire and Mater., 4, 67 – 73 (1997).CrossRef
10.
Zurück zum Zitat G-M Tsaousi, I. Douni, M. Taxiarchou, et al., “Development of foamed inorganic polymeric materials based on perlite,” in: IOP Conference Series: Material Science and Engineering (2016), Vol. 123. G-M Tsaousi, I. Douni, M. Taxiarchou, et al., “Development of foamed inorganic polymeric materials based on perlite,” in: IOP Conference Series: Material Science and Engineering (2016), Vol. 123.
11.
Zurück zum Zitat L. Korat, V. Ducman, A. Legat, and B. Mirtiè, “Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of x-ray micro-tomography (microCT) and mercury intrusion porosimetry (MIP),” Ceram. Int., 39(6), 6997 – 7005 (2013).CrossRef L. Korat, V. Ducman, A. Legat, and B. Mirtiè, “Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of x-ray micro-tomography (microCT) and mercury intrusion porosimetry (MIP),” Ceram. Int., 39(6), 6997 – 7005 (2013).CrossRef
12.
Zurück zum Zitat J. Henon, A. Alzina, J. Absi, et al., “Porosity control of cold consolidated geomaterial foam: Temperature effect,” Ceram. Int., 38(1), 77 – 84 (2012). J. Henon, A. Alzina, J. Absi, et al., “Porosity control of cold consolidated geomaterial foam: Temperature effect,” Ceram. Int., 38(1), 77 – 84 (2012).
13.
Zurück zum Zitat D. M. Huiskes, A. Keulen, Q. L. Yu, and H. J. H. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” in: 19 Internationale Baustofftagung, September 16 – 18, 2015, Weimar, Bundesrepublik Deutschland (2015), Vol. 2, pp. 1099 – 1106. D. M. Huiskes, A. Keulen, Q. L. Yu, and H. J. H. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” in: 19 Internationale Baustofftagung, September 16 – 18, 2015, Weimar, Bundesrepublik Deutschland (2015), Vol. 2, pp. 1099 – 1106.
14.
Zurück zum Zitat K. Pimraksa, P. Chindaprasirt, A. Rungchet, et al., “Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios,” Mater. Sci. Eng., 528(21), 6616 – 6623 (2011).CrossRef K. Pimraksa, P. Chindaprasirt, A. Rungchet, et al., “Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios,” Mater. Sci. Eng., 528(21), 6616 – 6623 (2011).CrossRef
15.
Zurück zum Zitat P. Posi, C. Teerachanwit, C. Tanutong, et al., “Lightweight geopolymer concrete containing aggregate from recycle lightweight block,” Mater. & Design, 52, 580 – 586 (2013).CrossRef P. Posi, C. Teerachanwit, C. Tanutong, et al., “Lightweight geopolymer concrete containing aggregate from recycle lightweight block,” Mater. & Design, 52, 580 – 586 (2013).CrossRef
16.
Zurück zum Zitat R. M. Novais, L. H. Buruberri, M. P. Seabra, et al., “Novel porous fly ash-containing geopolymers for pH buffering applications,” J. of Cleaner Production, 124(15), 395 – 404 (2016).CrossRef R. M. Novais, L. H. Buruberri, M. P. Seabra, et al., “Novel porous fly ash-containing geopolymers for pH buffering applications,” J. of Cleaner Production, 124(15), 395 – 404 (2016).CrossRef
17.
Zurück zum Zitat S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).CrossRef S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).CrossRef
18.
Zurück zum Zitat R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).CrossRef R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).CrossRef
19.
Zurück zum Zitat W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358(15), 1830 – 1839 (2012).CrossRef W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358(15), 1830 – 1839 (2012).CrossRef
20.
Zurück zum Zitat Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174(1 – 3), 108 – 112 (2010).CrossRef Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174(1 – 3), 108 – 112 (2010).CrossRef
21.
Zurück zum Zitat D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37(12), 1583 – 1589 (2007).CrossRef D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37(12), 1583 – 1589 (2007).CrossRef
22.
Zurück zum Zitat T. S. Lin, D. C. Jia, P. G. He, and M. R. Wang, “Thermomechanical and microstructural characterisation of geopolymers with alpha alumina particulate filler,” Int. J. Thermophys., 30, 1568 – 1577 (2009).CrossRef T. S. Lin, D. C. Jia, P. G. He, and M. R. Wang, “Thermomechanical and microstructural characterisation of geopolymers with alpha alumina particulate filler,” Int. J. Thermophys., 30, 1568 – 1577 (2009).CrossRef
23.
Zurück zum Zitat F. J. Silva and C. Thaumaturgo, “Fibre reinforcement and fracture response in geopolymeric materials,” Fatigue & Fracture Eng. Mat. & Struct., 26(2), 167 – 172 (2003).CrossRef F. J. Silva and C. Thaumaturgo, “Fibre reinforcement and fracture response in geopolymeric materials,” Fatigue & Fracture Eng. Mat. & Struct., 26(2), 167 – 172 (2003).CrossRef
24.
Zurück zum Zitat E. Kamseu, A. Rizzuti, C. Leonelli, and D. Perera, “Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition,” J. Mater. Sci., 45, 1715 – 1724 (2010).CrossRef E. Kamseu, A. Rizzuti, C. Leonelli, and D. Perera, “Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition,” J. Mater. Sci., 45, 1715 – 1724 (2010).CrossRef
25.
Zurück zum Zitat A. Buchwald, M. Vicent, R. Kriegel, et al., “Geopolymeric binders with different fine fillers – phase transformations at high temperatures,” Appl. Clay Sci., 46(2), 190 – 195 (2009). A. Buchwald, M. Vicent, R. Kriegel, et al., “Geopolymeric binders with different fine fillers – phase transformations at high temperatures,” Appl. Clay Sci., 46(2), 190 – 195 (2009).
26.
Zurück zum Zitat P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42(9), 3044 – 3054 (2007).CrossRef P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42(9), 3044 – 3054 (2007).CrossRef
27.
Zurück zum Zitat V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57(9 – 10), 1477 – 1482 (2003).CrossRef V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57(9 – 10), 1477 – 1482 (2003).CrossRef
28.
Zurück zum Zitat J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92(3), 607 – 615 (2009).CrossRef J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92(3), 607 – 615 (2009).CrossRef
29.
Zurück zum Zitat L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” in: IOP Conf. Series: Material Science and Engineering (2017). L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” in: IOP Conf. Series: Material Science and Engineering (2017).
30.
Zurück zum Zitat V. Antonoviè, M. Šukšta, I. Pundienè, and R. Stonys, “Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler,” Refract. Industr. Ceram., 52(1), 70 – 74 (2011).CrossRef V. Antonoviè, M. Šukšta, I. Pundienè, and R. Stonys, “Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler,” Refract. Industr. Ceram., 52(1), 70 – 74 (2011).CrossRef
32.
Zurück zum Zitat A. Fernandez-Jimenez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).CrossRef A. Fernandez-Jimenez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).CrossRef
33.
Zurück zum Zitat T. Pyatina and T. Sugama, “Set controlling additive for thermal-shock-resistant cement,” GRC Trans., 38, 251 – 257 (2014). T. Pyatina and T. Sugama, “Set controlling additive for thermal-shock-resistant cement,” GRC Trans., 38, 251 – 257 (2014).
Metadaten
Titel
Effect of the Ratio SiO2/Al2O3 on the Structure, Properties, and Thermal Stability of Geopolymer Refractory Materials
verfasst von
L. Dembovska
I. Pundiene
D. Bajare
G. Bumanis
Publikationsdatum
16.07.2018
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 3-4/2018
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-018-0039-0

Weitere Artikel der Ausgabe 3-4/2018

Glass and Ceramics 3-4/2018 Zur Ausgabe

SCIENCE FOR GLASS PRODUCTION

Laser Welding of Glass

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.