Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2017

27.02.2017 | Original Paper: Characterization methods of sol-gel and hybrid materials

Effects of chelating agents on the performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery prepared by sol–gel method

verfasst von: Qing Wu, Li Zhao, Jinzhu Wu

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, Li1.2Mn0.54Ni0.13Co0.13O2 as lithium-ion battery cathode active material was prepared by a sol–gel method. The effects of chelating agents including three different kinds of chelating agents (citric acid, glycolic acid, and polyvinyl pyrrolidone) on its performance were studied. X-ray diffraction tests were carried out to explore the samples’ structure, showing α-NaFeO2 structure with \(R - \bar 3m\) space group for all the samples. After various kinds of tests, the sample prepared with citric acid showed the worst properties among the three samples. The sample prepared with polyvinyl pyrrolidone has the smallest size (200–350 nm), with uniform distribution and smooth surfaces. Electrochemical tests show that it has the highest initial discharge capacity (231 mAh g−1) and initial charge/discharge efficiency (70.9%). Electrical impedance spectroscopy confirms that its low charge-transfer resistance is responsible for the superior discharge capacity and rate performance. Furthermore, the sample prepared with polyvinyl pyrrolidone could improve its cycle performance after coating with 3% graphene; its capacity retention is up to 89.8% after 100 cycles at 1 C rate. The sample prepared with glycolic acid achieved the best cycling stability. The discharge capacity was decreased from 150 to 138 mAh g−1, and the capacity retention rate was as high as 91.7% after 100th cycle under a current of 1 C.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4338-7/MediaObjects/10971_2017_4338_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019–2029CrossRef Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019–2029CrossRef
2.
Zurück zum Zitat Sivakumar P, Nayak PK, Grinblat J (2016) Effect of sonochemistry: Li-and Mn-rich layered high specific capacity cathode materials for Li-ion batteries. J Solid State Electrochem 20:1683–1695CrossRef Sivakumar P, Nayak PK, Grinblat J (2016) Effect of sonochemistry: Li-and Mn-rich layered high specific capacity cathode materials for Li-ion batteries. J Solid State Electrochem 20:1683–1695CrossRef
3.
Zurück zum Zitat Kang S, Li B, Qin H, Fang Y, Li X (2015) Simple solid-state method for synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode material with improved electrochemical performance in lithium-ion batteries. J Solid State Electrochem 19:525–531CrossRef Kang S, Li B, Qin H, Fang Y, Li X (2015) Simple solid-state method for synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode material with improved electrochemical performance in lithium-ion batteries. J Solid State Electrochem 19:525–531CrossRef
4.
Zurück zum Zitat Numata K, Sakaki C, Yamanaka S (1997) Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem Lett 1997:725–726CrossRef Numata K, Sakaki C, Yamanaka S (1997) Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem Lett 1997:725–726CrossRef
5.
Zurück zum Zitat Thackeray MM, Kang SH, Johnson CS, Vaughey JT (2007) Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRef Thackeray MM, Kang SH, Johnson CS, Vaughey JT (2007) Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRef
6.
Zurück zum Zitat Xu H, Deng S, Chen G (2014) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. J Mater Chem A 2:15015–15021CrossRef Xu H, Deng S, Chen G (2014) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. J Mater Chem A 2:15015–15021CrossRef
7.
Zurück zum Zitat Li Q, Li G, Fu C (2014) K+-doped Li1.2Mn0.54Ni0.13Co0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Inter 6:10330–10341CrossRef Li Q, Li G, Fu C (2014) K+-doped Li1.2Mn0.54Ni0.13Co0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Inter 6:10330–10341CrossRef
8.
Zurück zum Zitat Nayak PK, Grinblat J, Levi M, Haik O (2015) Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J Solid State Electrochem 19:2781–2792CrossRef Nayak PK, Grinblat J, Levi M, Haik O (2015) Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J Solid State Electrochem 19:2781–2792CrossRef
9.
Zurück zum Zitat Zhao Y, Xia M, Hu X (2015) Effects of Sn doping on the structural and electrochemical performance of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1174CrossRef Zhao Y, Xia M, Hu X (2015) Effects of Sn doping on the structural and electrochemical performance of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1174CrossRef
10.
Zurück zum Zitat Zhao J, Wang Z, Guo H (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41:11396–11401CrossRef Zhao J, Wang Z, Guo H (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41:11396–11401CrossRef
11.
Zurück zum Zitat Chen H, Hu Q, Huang Z (2016) Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42:263–269CrossRef Chen H, Hu Q, Huang Z (2016) Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42:263–269CrossRef
12.
Zurück zum Zitat Deng Y, Liu S, Liang X (2013) Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode. J Solid State Electrochem 17:1067–1075CrossRef Deng Y, Liu S, Liang X (2013) Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode. J Solid State Electrochem 17:1067–1075CrossRef
13.
Zurück zum Zitat Wise AM, Ban C, Weker JN (2015) Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem Mater 27:6146–6154CrossRef Wise AM, Ban C, Weker JN (2015) Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem Mater 27:6146–6154CrossRef
14.
Zurück zum Zitat Yuan W, Zhang HZ, Liu Q, Li GR (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207CrossRef Yuan W, Zhang HZ, Liu Q, Li GR (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207CrossRef
15.
Zurück zum Zitat Sun S, Wan N, Wu Q (2015) Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics 278:85–90CrossRef Sun S, Wan N, Wu Q (2015) Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics 278:85–90CrossRef
16.
Zurück zum Zitat Lu C, Wu H, Chen B (2015) Improving the electrochemical performance of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route. J Alloy Compd 634:75–82CrossRef Lu C, Wu H, Chen B (2015) Improving the electrochemical performance of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route. J Alloy Compd 634:75–82CrossRef
17.
Zurück zum Zitat Zhou L, Zhao D, Lou XW (2012) LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem 124:243–245CrossRef Zhou L, Zhao D, Lou XW (2012) LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem 124:243–245CrossRef
18.
Zurück zum Zitat Zhao C, Shen Q (2014) Organic acid assisted solid-state synthesis of Li1.2Ni0.16Co0.08Mn0.56O2 nanoparticles as lithium ion battery cathodes. Curr Appl Phys 14:1849–1853CrossRef Zhao C, Shen Q (2014) Organic acid assisted solid-state synthesis of Li1.2Ni0.16Co0.08Mn0.56O2 nanoparticles as lithium ion battery cathodes. Curr Appl Phys 14:1849–1853CrossRef
19.
Zurück zum Zitat Bhuvaneswari D, Kalaiselvi N (2012) Surfactant-coassisted sol-gel synthesis to prepare LiNiyMnyCo1-2yO2 with improved electrochemical behavior. J Solid State Electrochem 16:3667–3674CrossRef Bhuvaneswari D, Kalaiselvi N (2012) Surfactant-coassisted sol-gel synthesis to prepare LiNiyMnyCo1-2yO2 with improved electrochemical behavior. J Solid State Electrochem 16:3667–3674CrossRef
20.
Zurück zum Zitat Shi SJ, Tu JP, Tang YY (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRef Shi SJ, Tu JP, Tang YY (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRef
21.
Zurück zum Zitat Zhang L, Wu BR, Li N, Wu F (2014) Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta 118:67–74CrossRef Zhang L, Wu BR, Li N, Wu F (2014) Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta 118:67–74CrossRef
22.
Zurück zum Zitat Li Y, Mei J, Guo X (2016) Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for Li-ion batteries. RSC Adv 6:70091–70098CrossRef Li Y, Mei J, Guo X (2016) Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for Li-ion batteries. RSC Adv 6:70091–70098CrossRef
23.
Zurück zum Zitat Feinle A, Elsaesser MS, Hüsing N (2016) Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem Soc Rev 45:3377–3399CrossRef Feinle A, Elsaesser MS, Hüsing N (2016) Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem Soc Rev 45:3377–3399CrossRef
24.
Zurück zum Zitat Abuzeid HAM, Hashem AMA, Abdel-Ghany AE (2011) De-intercalation of LixCo0.8Mn0.2O2: a magnetic approach. J Power Sources 196:6440–6448CrossRef Abuzeid HAM, Hashem AMA, Abdel-Ghany AE (2011) De-intercalation of LixCo0.8Mn0.2O2: a magnetic approach. J Power Sources 196:6440–6448CrossRef
25.
Zurück zum Zitat Myung ST, Kumagai N, Komaba S (2001) Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics 139:47–56CrossRef Myung ST, Kumagai N, Komaba S (2001) Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics 139:47–56CrossRef
26.
Zurück zum Zitat Jiao LF, Zhang M, Yuan HT (2007) Effect of Cr doping on the structural, electrochemical performance of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184CrossRef Jiao LF, Zhang M, Yuan HT (2007) Effect of Cr doping on the structural, electrochemical performance of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184CrossRef
27.
Zurück zum Zitat Dahn JR, Sacken von U, Michal CA (1990) Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 44:87–97CrossRef Dahn JR, Sacken von U, Michal CA (1990) Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 44:87–97CrossRef
28.
Zurück zum Zitat Nadimpalli SPV, Sethuraman VA, Abraham DP (2015) Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing. J Electrochem Soc 162:A2656–A2663CrossRef Nadimpalli SPV, Sethuraman VA, Abraham DP (2015) Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing. J Electrochem Soc 162:A2656–A2663CrossRef
29.
Zurück zum Zitat Ren S, Chen R, Maawad E (2015) Improved voltage and cycling for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv Sci 2:1500128CrossRef Ren S, Chen R, Maawad E (2015) Improved voltage and cycling for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv Sci 2:1500128CrossRef
30.
Zurück zum Zitat Croy JR, Gallagher KG, Balasubramanian M (2014) Quantifying hysteresis and voltage fade in xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content. J Electrochem Soc 161:A318–A325CrossRef Croy JR, Gallagher KG, Balasubramanian M (2014) Quantifying hysteresis and voltage fade in xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content. J Electrochem Soc 161:A318–A325CrossRef
31.
Zurück zum Zitat Mohanty D, Li J, Abraham DP (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26:6272–6280CrossRef Mohanty D, Li J, Abraham DP (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26:6272–6280CrossRef
32.
Zurück zum Zitat Yu SH, Yoon T, Mun J (2013) Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J Mater Chem A 1(8):2833–2839CrossRef Yu SH, Yoon T, Mun J (2013) Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J Mater Chem A 1(8):2833–2839CrossRef
33.
Zurück zum Zitat Xu B, Fell CR, Chi M (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energ Environ Sci 4(6):2223–2233CrossRef Xu B, Fell CR, Chi M (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energ Environ Sci 4(6):2223–2233CrossRef
34.
Zurück zum Zitat Croy JR, Kim D, Balasubramanian M (2012) Countering the voltage decay in high capacity xLi2MnO3•(1–x) LiMO2 electrodes (M=Mn, Ni, Co) for Li+-Ion batteries. J Electrochem Soc 159(6):A781–A790CrossRef Croy JR, Kim D, Balasubramanian M (2012) Countering the voltage decay in high capacity xLi2MnO3•(1–x) LiMO2 electrodes (M=Mn, Ni, Co) for Li+-Ion batteries. J Electrochem Soc 159(6):A781–A790CrossRef
35.
Zurück zum Zitat Bai Y, Wang X, Zhang X (2013) The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim Acta 109:355–364CrossRef Bai Y, Wang X, Zhang X (2013) The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim Acta 109:355–364CrossRef
36.
Zurück zum Zitat Hong J, Gwon H, Jung SK (2015) Review—lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162:A2447–A2467CrossRef Hong J, Gwon H, Jung SK (2015) Review—lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162:A2447–A2467CrossRef
37.
Zurück zum Zitat Jiang KC, Xin S, Lee JS (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 14(8):2934–2939CrossRef Jiang KC, Xin S, Lee JS (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 14(8):2934–2939CrossRef
Metadaten
Titel
Effects of chelating agents on the performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery prepared by sol–gel method
verfasst von
Qing Wu
Li Zhao
Jinzhu Wu
Publikationsdatum
27.02.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4338-7

Weitere Artikel der Ausgabe 2/2017

Journal of Sol-Gel Science and Technology 2/2017 Zur Ausgabe

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

The influence of copper-cobalt co-doping on optical and electrical properties of nanostructures TiO2 thin films prepared by sol-gel

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Crucial role of sol–gel synthesis in the structural and magnetic properties of LaFe0.5(Co/Ni)0.5O3 perovskites

Original Paper: Sol-gel, hybrids and solution chemistries

Sol–gel synthesis and characterization of two-component systems based on MgO

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Fabrication of luminescence-sensing films based on surface precipitation reaction of Mg–Al–Eu LDHs

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.