Skip to main content

2019 | OriginalPaper | Buchkapitel

11. Efficiency of Constructed Wetland Microcosms (CWMs) for the Treatment of Domestic Wastewater Using Aquatic Macrophytes

verfasst von : Saroj Kumar, Venkatesh Dutta

Erschienen in: Environmental Biotechnology: For Sustainable Future

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Constructed wetland microcosms (CWMs) are engineered wastewater treatment systems that are designed to treat wastewater from small communities, involving aquatic plants, a variety of substrate materials, soils and their associated microbial fauna. CWMs are considered as promising ecological technology that requires low or no energy input, low operational cost and provides more benefits and better alternative to conventional wastewater treatment systems. In CWMs dissolved oxygen (DO), pH and temperature are controlled to achieve the desirable treatment efficiency. Several other components such as plant, substrate, water depth, hydraulic loading rates (HLRs) and hydraulic retention time (HRT) are also critical to establishing viable CWMs for the better performance. The literature on CWMs suggests excellent nutrient removal performances which are achieved with low and stable effluent concentrations. Further, the choice of appropriate macrophyte species having high uptake of pollutants and high pollutant tolerance and choice of substrate materials are critical for treatment performance. CWMs can be differentiated based on existing native vegetation type (such as floating leaved macrophytes, free-floating macrophytes, emergent macrophytes and submerged macrophytes, in which emergent macrophytes are common) and, hydrology (surface flow constructed wetlands (SFCWs), subsurface flow constructed wetlands (SSFCWs) and hybrid systems). The focus of this paper is to review the state of the art in improving the overall efficiency of CWMs for wastewater treatment. The paper documents both the design and operation of CWMs which are critically dependent on environmental, operational and hydraulic factors. It further outlines key challenges and future prospects for their wider replication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abou-Elela, S. I., Elekhnawy, M. A., Khalil, M. T., & Hellal, M. S. (2017). Factors affecting the performance of horizontal flow constructed treatment wetland vegetated with Cyperus papyrus for municipal wastewater treatment. International Journal of Phytoremediation, 19(11), 1023–1028.CrossRef Abou-Elela, S. I., Elekhnawy, M. A., Khalil, M. T., & Hellal, M. S. (2017). Factors affecting the performance of horizontal flow constructed treatment wetland vegetated with Cyperus papyrus for municipal wastewater treatment. International Journal of Phytoremediation, 19(11), 1023–1028.CrossRef
Zurück zum Zitat Adrados, B., Sánchez, O., Arias, C. A., Becares, E., Garrido, L., Mas, J., Brix, H., & Morató, J. (2014). Microbial communities from different types of natural wastewater treatment systems: Vertical and horizontal flow constructed wetlands and biofilters. Water Research, 55, 304–312.CrossRef Adrados, B., Sánchez, O., Arias, C. A., Becares, E., Garrido, L., Mas, J., Brix, H., & Morató, J. (2014). Microbial communities from different types of natural wastewater treatment systems: Vertical and horizontal flow constructed wetlands and biofilters. Water Research, 55, 304–312.CrossRef
Zurück zum Zitat Akratos, C. S., Papaspyros, J. N., & Tsihrintzis, V. A. (2009). Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation. Bioresource Technology, 100, 586–596.CrossRef Akratos, C. S., Papaspyros, J. N., & Tsihrintzis, V. A. (2009). Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation. Bioresource Technology, 100, 586–596.CrossRef
Zurück zum Zitat Ann, Y., Reddy, K. R., & Delfino, J. J. (1999). Influence of chemicals amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering, 14, 157–167.CrossRef Ann, Y., Reddy, K. R., & Delfino, J. J. (1999). Influence of chemicals amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering, 14, 157–167.CrossRef
Zurück zum Zitat Ávila, C., Salas, J. J., Martín, I., Aragón, C., & García, J. (2013). Integrated treatment of combined sewer wastewater and storm water in a hybrid constructed wetland system in southern Spain and its further reuse. Ecological Engineering, 50, 13–20.CrossRef Ávila, C., Salas, J. J., Martín, I., Aragón, C., & García, J. (2013). Integrated treatment of combined sewer wastewater and storm water in a hybrid constructed wetland system in southern Spain and its further reuse. Ecological Engineering, 50, 13–20.CrossRef
Zurück zum Zitat Ávila, C., Matamoros, V., Reyes-Contreras, C., Piña, B., Casado, M., Mita, L., Rivetti, C., Barata, C., García, J., & Bayona, J. M. (2014). Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. The Science of the Total Environment, 470, 1272–1280.CrossRef Ávila, C., Matamoros, V., Reyes-Contreras, C., Piña, B., Casado, M., Mita, L., Rivetti, C., Barata, C., García, J., & Bayona, J. M. (2014). Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. The Science of the Total Environment, 470, 1272–1280.CrossRef
Zurück zum Zitat Babatunde, A. O., Zhao, Y. Q., & Zhao, X. H. (2010). Alum sludge-based constructed wetland system for enhanced removal of P and OM from wastewater: Concept, design and performance analysis. Bioresource Technology, 101(16), 6576–6579.CrossRef Babatunde, A. O., Zhao, Y. Q., & Zhao, X. H. (2010). Alum sludge-based constructed wetland system for enhanced removal of P and OM from wastewater: Concept, design and performance analysis. Bioresource Technology, 101(16), 6576–6579.CrossRef
Zurück zum Zitat Badhe, N., Saha, S., Biswas, R., & Nandy, T. (2014). Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresource Technology, 169, 596–604.CrossRef Badhe, N., Saha, S., Biswas, R., & Nandy, T. (2014). Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresource Technology, 169, 596–604.CrossRef
Zurück zum Zitat Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., & Chazarenc, F. (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering, 68, 214–222.CrossRef Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., & Chazarenc, F. (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering, 68, 214–222.CrossRef
Zurück zum Zitat Bohórquez, E., Paredes, D., & Arias, C. A. (2017). Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: Effect of different design and operational parameters. Environmental Technology, 38, 199–208.CrossRef Bohórquez, E., Paredes, D., & Arias, C. A. (2017). Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: Effect of different design and operational parameters. Environmental Technology, 38, 199–208.CrossRef
Zurück zum Zitat Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H., Van Vuuren, D. P., Willems, J., Rufino, M. C., & Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 periods. In Proceedings of the National Academy of Sciences (Vol. 110, pp. 20882–20887). Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H., Van Vuuren, D. P., Willems, J., Rufino, M. C., & Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 periods. In Proceedings of the National Academy of Sciences (Vol. 110, pp. 20882–20887).
Zurück zum Zitat Bruch, I., Fritsche, J., Bänninger, D., Alewell, U., Sendelov, M., Hürlimann, H., Hasselbach, R., & Alewell, C. (2011). Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresource Technology, 102, 937–941.CrossRef Bruch, I., Fritsche, J., Bänninger, D., Alewell, U., Sendelov, M., Hürlimann, H., Hasselbach, R., & Alewell, C. (2011). Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresource Technology, 102, 937–941.CrossRef
Zurück zum Zitat Butterworth, E., Richards, A., Jones, M., Mansi, G., Ranieri, E., Dotro, G., & Jefferson, B. (2016). Performance of four full-scale artificially aerated horizontal flow constructed wetlands for domestic wastewater treatment. Water, 8, 365.CrossRef Butterworth, E., Richards, A., Jones, M., Mansi, G., Ranieri, E., Dotro, G., & Jefferson, B. (2016). Performance of four full-scale artificially aerated horizontal flow constructed wetlands for domestic wastewater treatment. Water, 8, 365.CrossRef
Zurück zum Zitat Button, M., Nivala, J., Weber, K. P., Aubron, T., & Müller, R. A. (2015). Microbial community metabolic function in subsurface flow constructed wetlands of different designs. Ecological Engineering, 80, 162–171.CrossRef Button, M., Nivala, J., Weber, K. P., Aubron, T., & Müller, R. A. (2015). Microbial community metabolic function in subsurface flow constructed wetlands of different designs. Ecological Engineering, 80, 162–171.CrossRef
Zurück zum Zitat Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2008). Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresource Technology, 99, 6866–6877.CrossRef Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2008). Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresource Technology, 99, 6866–6877.CrossRef
Zurück zum Zitat Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2009). Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresource Technology, 100, 3205–3213.CrossRef Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2009). Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresource Technology, 100, 3205–3213.CrossRef
Zurück zum Zitat Chen, Y., Wen, Y., Zhou, Q., & Vymazal, J. (2014). Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment. Water Research, 63, 158–167.CrossRef Chen, Y., Wen, Y., Zhou, Q., & Vymazal, J. (2014). Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment. Water Research, 63, 158–167.CrossRef
Zurück zum Zitat Chong, H. L. H., Chia, P. S., & Ahmad, M. N. (2013). The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresource Technology, 130, 181–186.CrossRef Chong, H. L. H., Chia, P. S., & Ahmad, M. N. (2013). The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresource Technology, 130, 181–186.CrossRef
Zurück zum Zitat Cooper, P. F., Job, G. D., Green, M. B., & Shutes, R. B. E. (1997). Reed beds and constructed wetlands for wastewater treatment. European Water Pollution Control, 6, 49. Cooper, P. F., Job, G. D., Green, M. B., & Shutes, R. B. E. (1997). Reed beds and constructed wetlands for wastewater treatment. European Water Pollution Control, 6, 49.
Zurück zum Zitat Cui, L., Ouyang, Y., Lou, Q., Yang, F., Chen, Y., Zhu, W., & Luo, S. (2010). Removal of nutrients from wastewater with Canna indica L. Under different vertical-flow constructed wetland conditions. Ecological Engineering, 36, 1083–1088.CrossRef Cui, L., Ouyang, Y., Lou, Q., Yang, F., Chen, Y., Zhu, W., & Luo, S. (2010). Removal of nutrients from wastewater with Canna indica L. Under different vertical-flow constructed wetland conditions. Ecological Engineering, 36, 1083–1088.CrossRef
Zurück zum Zitat Dong, X., & Reddy, G. B. (2010). Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technology, 101, 1175–1182.CrossRef Dong, X., & Reddy, G. B. (2010). Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technology, 101, 1175–1182.CrossRef
Zurück zum Zitat Drizo, A. F. C. A., Frost, C. A., Smith, K. A., & Grace, J. (1997). Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Science and Technology, 35, 95–102.CrossRef Drizo, A. F. C. A., Frost, C. A., Smith, K. A., & Grace, J. (1997). Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Science and Technology, 35, 95–102.CrossRef
Zurück zum Zitat Dzakpasu, M., Scholz, M., McCarthy, V., & Jordan, S. N. (2015). Assessment of long-term phosphorus retention in an integrated constructed wetland treating domestic wastewater. Environmental Science and Pollution Research, 22, 305–313.CrossRef Dzakpasu, M., Scholz, M., McCarthy, V., & Jordan, S. N. (2015). Assessment of long-term phosphorus retention in an integrated constructed wetland treating domestic wastewater. Environmental Science and Pollution Research, 22, 305–313.CrossRef
Zurück zum Zitat Elfanssi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2017). Phytoremediation of domestic wastewater using a hybrid constructed wetlands in mountainous rural area. International Journal of Phytoremediation, 20(1), 75–87.CrossRef Elfanssi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2017). Phytoremediation of domestic wastewater using a hybrid constructed wetlands in mountainous rural area. International Journal of Phytoremediation, 20(1), 75–87.CrossRef
Zurück zum Zitat Elsaesser, D., Blankenberg, A. G. B., Geist, A., Mæhlum, T., & Schulz, R. (2011). Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: Application of the toxic units approach. Ecological Engineering, 37, 955–962.CrossRef Elsaesser, D., Blankenberg, A. G. B., Geist, A., Mæhlum, T., & Schulz, R. (2011). Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: Application of the toxic units approach. Ecological Engineering, 37, 955–962.CrossRef
Zurück zum Zitat Fan, J., Wang, W., Zhang, B., Guo, Y., Ngo, H. H., Guo, W., Zhang, J., & Wu, H. (2013). Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. Bioresource Technology, 143, 461–466.CrossRef Fan, J., Wang, W., Zhang, B., Guo, Y., Ngo, H. H., Guo, W., Zhang, J., & Wu, H. (2013). Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. Bioresource Technology, 143, 461–466.CrossRef
Zurück zum Zitat Fan, J., Zhang, J., Guo, W., Liang, S., & Wu, H. (2016). Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands. Bioresource Technology, 214, 871–875.CrossRef Fan, J., Zhang, J., Guo, W., Liang, S., & Wu, H. (2016). Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands. Bioresource Technology, 214, 871–875.CrossRef
Zurück zum Zitat Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., Camper, A. K., & Stein, O. R. (2009). Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering, 35, 987–1004.CrossRef Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., Camper, A. K., & Stein, O. R. (2009). Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering, 35, 987–1004.CrossRef
Zurück zum Zitat Foladori, P., Ruaben, J., & Ortigara, A. R. (2013). Recirculation or artificial aeration in vertical flow constructed wetlands: A comparative study for treating high load wastewater. Bioresource Technology, 149, 398–405.CrossRef Foladori, P., Ruaben, J., & Ortigara, A. R. (2013). Recirculation or artificial aeration in vertical flow constructed wetlands: A comparative study for treating high load wastewater. Bioresource Technology, 149, 398–405.CrossRef
Zurück zum Zitat Fountoulakis, M. S., Sabathianakis, G., Kritsotakis, I., Kabourakis, E. M., & Manios, T. (2017). Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment. The Science of the Total Environment, 583, 432–439.CrossRef Fountoulakis, M. S., Sabathianakis, G., Kritsotakis, I., Kabourakis, E. M., & Manios, T. (2017). Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment. The Science of the Total Environment, 583, 432–439.CrossRef
Zurück zum Zitat Garcia, J., Rousseau, D. P., Morato, J., Lesage, E. L. S., Matamoros, V., & Bayona, J. M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: A review. Critical Reviews in Environmental Science and Technology, 40, 561–661.CrossRef Garcia, J., Rousseau, D. P., Morato, J., Lesage, E. L. S., Matamoros, V., & Bayona, J. M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: A review. Critical Reviews in Environmental Science and Technology, 40, 561–661.CrossRef
Zurück zum Zitat Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environmental Science and Pollution Research, 22, 12982–12991.CrossRef Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environmental Science and Pollution Research, 22, 12982–12991.CrossRef
Zurück zum Zitat Geng, Y., Han, W., Yu, C., Jiang, Q., Wu, J., Chang, J., & Ge, Y. (2017). Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecological Engineering, 107, 110–119.CrossRef Geng, Y., Han, W., Yu, C., Jiang, Q., Wu, J., Chang, J., & Ge, Y. (2017). Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecological Engineering, 107, 110–119.CrossRef
Zurück zum Zitat Giaramida, L., Manage, P. M., Edwards, C., Singh, B. K., & Lawton, L. A. (2013). Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. International Biodeterioration and Biodegradation, 84, 111–117.CrossRef Giaramida, L., Manage, P. M., Edwards, C., Singh, B. K., & Lawton, L. A. (2013). Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. International Biodeterioration and Biodegradation, 84, 111–117.CrossRef
Zurück zum Zitat Guo, C., Cui, Y., Dong, B., Luo, Y., Liu, F., Zhao, S., & Wu, H. (2017). Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland. Bioresource Technology, 238, 461–471.CrossRef Guo, C., Cui, Y., Dong, B., Luo, Y., Liu, F., Zhao, S., & Wu, H. (2017). Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland. Bioresource Technology, 238, 461–471.CrossRef
Zurück zum Zitat Han, W., Chang, J., Fan, X., Du, Y., Chang, S. X., Zhang, C., & Ge, Y. (2016). Plant species diversity impacts nitrogen removal and nitrous oxide emissions as much as carbon addition in constructed wetland microcosms. Ecological Engineering, 93, 144–151.CrossRef Han, W., Chang, J., Fan, X., Du, Y., Chang, S. X., Zhang, C., & Ge, Y. (2016). Plant species diversity impacts nitrogen removal and nitrous oxide emissions as much as carbon addition in constructed wetland microcosms. Ecological Engineering, 93, 144–151.CrossRef
Zurück zum Zitat Haynes, R. J. (2015). Use of industrial wastes as media in constructed wetlands and filter beds—prospects for removal of phosphate and metals from wastewater streams. Critical Reviews in Environmental Science and Technology, 45, 1041–1103.CrossRef Haynes, R. J. (2015). Use of industrial wastes as media in constructed wetlands and filter beds—prospects for removal of phosphate and metals from wastewater streams. Critical Reviews in Environmental Science and Technology, 45, 1041–1103.CrossRef
Zurück zum Zitat Headley, T., Nivala, J., Kassa, K., Olsson, L., Wallace, S., Brix, H., van Afferden, M., & Müller, R. (2013). Escherichia coli removal and internal dynamics in subsurface flow eco-technologies: Effects of design and plants. Ecological Engineering, 61, 564–574.CrossRef Headley, T., Nivala, J., Kassa, K., Olsson, L., Wallace, S., Brix, H., van Afferden, M., & Müller, R. (2013). Escherichia coli removal and internal dynamics in subsurface flow eco-technologies: Effects of design and plants. Ecological Engineering, 61, 564–574.CrossRef
Zurück zum Zitat Iasur-Kruh, L., Hadar, Y., Milstein, D., Gasith, A., & Minz, D. (2010). Microbial population and activity in wetland microcosms constructed for improving treated municipal wastewater. Microbial Ecology, 59, 700–709.CrossRef Iasur-Kruh, L., Hadar, Y., Milstein, D., Gasith, A., & Minz, D. (2010). Microbial population and activity in wetland microcosms constructed for improving treated municipal wastewater. Microbial Ecology, 59, 700–709.CrossRef
Zurück zum Zitat Istenic, D., Bodík, I., & Bulc, T. (2015). Status of decentralised wastewater treatment systems and barriers for implementation of nature-based systems in central and eastern Europe. Environmental Science and Pollution Research, 22, 12879–12884.CrossRef Istenic, D., Bodík, I., & Bulc, T. (2015). Status of decentralised wastewater treatment systems and barriers for implementation of nature-based systems in central and eastern Europe. Environmental Science and Pollution Research, 22, 12879–12884.CrossRef
Zurück zum Zitat Jiang, Y., Sun, Y., Pan, J., Qi, S., Chen, Q., & Tong, D. (2017). Nitrogen removal and N2O emission in subsurface wastewater infiltration systems with/without intermittent aeration under different organic loading rates. Bioresource Technology, 244, 8–14.CrossRef Jiang, Y., Sun, Y., Pan, J., Qi, S., Chen, Q., & Tong, D. (2017). Nitrogen removal and N2O emission in subsurface wastewater infiltration systems with/without intermittent aeration under different organic loading rates. Bioresource Technology, 244, 8–14.CrossRef
Zurück zum Zitat Kadlec, R. H. (2009). Comparison of free water and horizontal subsurface flow treatment wetlands. Ecological Engineering, 35, 159–174.CrossRef Kadlec, R. H. (2009). Comparison of free water and horizontal subsurface flow treatment wetlands. Ecological Engineering, 35, 159–174.CrossRef
Zurück zum Zitat Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. Boca Raton: CRC Press.CrossRef Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. Boca Raton: CRC Press.CrossRef
Zurück zum Zitat Khan, S., Ahmad, I., Shah, M. T., Rehman, S., & Khaliq, A. (2009). Use of constructed wetland for the removal of heavy metals from industrial wastewater. Journal of Environmental Management, 90, 3451–3457.CrossRef Khan, S., Ahmad, I., Shah, M. T., Rehman, S., & Khaliq, A. (2009). Use of constructed wetland for the removal of heavy metals from industrial wastewater. Journal of Environmental Management, 90, 3451–3457.CrossRef
Zurück zum Zitat Kumari, M., & Tripathi, B. D. (2014). Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62, 48–53.CrossRef Kumari, M., & Tripathi, B. D. (2014). Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62, 48–53.CrossRef
Zurück zum Zitat Ladu, J. L. C., Loboka, M. K., & Lukaw, Y. S. (2012). Integrated constructed wetland for nitrogen elimination from domestic sewage: The case study of Soba rural area in Khartoum South, Sudan. Natural Science, 10, 30–36. Ladu, J. L. C., Loboka, M. K., & Lukaw, Y. S. (2012). Integrated constructed wetland for nitrogen elimination from domestic sewage: The case study of Soba rural area in Khartoum South, Sudan. Natural Science, 10, 30–36.
Zurück zum Zitat Li, L., Li, Y., Biswas, D. K., Nian, Y., & Jiang, G. (2008). Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology, 99, 1656–1663.CrossRef Li, L., Li, Y., Biswas, D. K., Nian, Y., & Jiang, G. (2008). Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology, 99, 1656–1663.CrossRef
Zurück zum Zitat Li, C. J., Wan, M. H., Dong, Y., Men, Z. Y., Lin, Y., Wu, D. Y., & Kong, H. N. (2011). Treating surface water with low nutrients concentration by mixed substrates constructed wetlands. Journal of Environment Science and Health Part A, 46, 771–776.CrossRef Li, C. J., Wan, M. H., Dong, Y., Men, Z. Y., Lin, Y., Wu, D. Y., & Kong, H. N. (2011). Treating surface water with low nutrients concentration by mixed substrates constructed wetlands. Journal of Environment Science and Health Part A, 46, 771–776.CrossRef
Zurück zum Zitat Li, F., Lu, L., Zheng, X., Ngo, H. H., Liang, S., Guo, W., & Zhang, X. (2014). Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresource Technology, 169, 395–402.CrossRef Li, F., Lu, L., Zheng, X., Ngo, H. H., Liang, S., Guo, W., & Zhang, X. (2014). Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresource Technology, 169, 395–402.CrossRef
Zurück zum Zitat Li, M., Wu, H., Zhang, J., Ngo, H. H., Guo, W., & Kong, Q. (2017). Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios. Bioresource Technology, 240, 157–164.CrossRef Li, M., Wu, H., Zhang, J., Ngo, H. H., Guo, W., & Kong, Q. (2017). Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios. Bioresource Technology, 240, 157–164.CrossRef
Zurück zum Zitat Liu, R., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2015). A review of incorporation of constructed wetland with other treatment processes. Chemical Engineering Journal, 279, 220–230.CrossRef Liu, R., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2015). A review of incorporation of constructed wetland with other treatment processes. Chemical Engineering Journal, 279, 220–230.CrossRef
Zurück zum Zitat Lv, T., Zhang, Y., Carvalho, P. N., Zhang, L., Button, M., Arias, C. A., Weber, K. P., & Brix, H. (2017). Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 98, 378–387.CrossRef Lv, T., Zhang, Y., Carvalho, P. N., Zhang, L., Button, M., Arias, C. A., Weber, K. P., & Brix, H. (2017). Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 98, 378–387.CrossRef
Zurück zum Zitat Machado, A. I., Beretta, M., Fragoso, R., & Duarte, E. (2017). Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of Environment Management, 187, 560–570.CrossRef Machado, A. I., Beretta, M., Fragoso, R., & Duarte, E. (2017). Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of Environment Management, 187, 560–570.CrossRef
Zurück zum Zitat Maine, M. A., Hadad, H. R., Sánchez, G. C., Di Luca, G. A., Mufarrege, M. M., Caffaratti, S. E., & Pedro, M. C. (2017). Long-term performance of two free-water surface wetlands for metallurgical effluent treatment. Ecological Engineering, 98, 372–377.CrossRef Maine, M. A., Hadad, H. R., Sánchez, G. C., Di Luca, G. A., Mufarrege, M. M., Caffaratti, S. E., & Pedro, M. C. (2017). Long-term performance of two free-water surface wetlands for metallurgical effluent treatment. Ecological Engineering, 98, 372–377.CrossRef
Zurück zum Zitat Melián, J. H., Rodríguez, A. M., Arana, J., Díaz, O. G., & Henríquez, J. G. (2010). Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 36, 891–899.CrossRef Melián, J. H., Rodríguez, A. M., Arana, J., Díaz, O. G., & Henríquez, J. G. (2010). Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 36, 891–899.CrossRef
Zurück zum Zitat Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326.CrossRef Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326.CrossRef
Zurück zum Zitat Mexicano, L., Glenn, E. P., Hinojosa-Huerta, O., Garcia-Hernandez, J., Flessa, K., & Hinojosa-Corona, A. (2013). Long-term sustainability of the hydrology and vegetation of Cienega de Santa Clara, an anthropogenic wetland created by disposal of agricultural drain water in the delta of the Colorado River, Mexico. Ecological Engineering, 59, 111–120.CrossRef Mexicano, L., Glenn, E. P., Hinojosa-Huerta, O., Garcia-Hernandez, J., Flessa, K., & Hinojosa-Corona, A. (2013). Long-term sustainability of the hydrology and vegetation of Cienega de Santa Clara, an anthropogenic wetland created by disposal of agricultural drain water in the delta of the Colorado River, Mexico. Ecological Engineering, 59, 111–120.CrossRef
Zurück zum Zitat Mthembu, M. S., Odinga, C. A., Swalaha, F. M., & Bux, F. (2013). Constructed wetlands: A future alternative wastewater treatment technology. African Journal of Biotechnology, 12(29), 4542–4553.CrossRef Mthembu, M. S., Odinga, C. A., Swalaha, F. M., & Bux, F. (2013). Constructed wetlands: A future alternative wastewater treatment technology. African Journal of Biotechnology, 12(29), 4542–4553.CrossRef
Zurück zum Zitat Mulling, B. T., van den Boomen, R. M., van der Geest, H. G., Kappelhof, J. W., & Admiraal, W. (2013). Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland. Water Research, 47, 1091–1100.CrossRef Mulling, B. T., van den Boomen, R. M., van der Geest, H. G., Kappelhof, J. W., & Admiraal, W. (2013). Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland. Water Research, 47, 1091–1100.CrossRef
Zurück zum Zitat Naylor, S., Brisson, J., Labelle, M. A., Drizo, A., & Comeau, Y. (2003). Treatment of freshwater fish farm effluent using constructed wetlands: The role of plants and substrate. Water Science and Technology, 48, 215–222.CrossRef Naylor, S., Brisson, J., Labelle, M. A., Drizo, A., & Comeau, Y. (2003). Treatment of freshwater fish farm effluent using constructed wetlands: The role of plants and substrate. Water Science and Technology, 48, 215–222.CrossRef
Zurück zum Zitat Okochi, N. C., & McMartin, D. W. (2011). Laboratory investigations of storm water remediation via slag: Effects of metals on phosphorus removal. Journal of Hazardous Materials, 187, 250–257.CrossRef Okochi, N. C., & McMartin, D. W. (2011). Laboratory investigations of storm water remediation via slag: Effects of metals on phosphorus removal. Journal of Hazardous Materials, 187, 250–257.CrossRef
Zurück zum Zitat Ong, S. A., Uchiyama, K., Inadama, D., Ishida, Y., & Yamagiwa, K. (2010). Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technology, 101, 7239–7244.CrossRef Ong, S. A., Uchiyama, K., Inadama, D., Ishida, Y., & Yamagiwa, K. (2010). Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technology, 101, 7239–7244.CrossRef
Zurück zum Zitat Park, J. H., Wang, J. J., Kim, S. H., Cho, J. S., Kang, S. W., Delaune, R. D., & Seo, D. C. (2017). Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag. Chemical Engineering Journal, 327, 713–724.CrossRef Park, J. H., Wang, J. J., Kim, S. H., Cho, J. S., Kang, S. W., Delaune, R. D., & Seo, D. C. (2017). Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag. Chemical Engineering Journal, 327, 713–724.CrossRef
Zurück zum Zitat Penuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., & Nardin, E. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934.CrossRef Penuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., & Nardin, E. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934.CrossRef
Zurück zum Zitat Rai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K., Dwivedi, S., Shukla, M. K., Mallick, S., Singh, S. N., & Nautiyal, C. S. (2013). Constructed wetland as an eco-technological tool for pollution treatment for conservation of Ganga River. Bioresource Technology, 148, 535–541.CrossRef Rai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K., Dwivedi, S., Shukla, M. K., Mallick, S., Singh, S. N., & Nautiyal, C. S. (2013). Constructed wetland as an eco-technological tool for pollution treatment for conservation of Ganga River. Bioresource Technology, 148, 535–541.CrossRef
Zurück zum Zitat Ren, Y., Zhang, B., Liu, Z., & Wang, J. (2007). Optimization of four kinds of constructed wetlands substrate combination treating domestic sewage. Wuhan University Journal of Natural Science, 12, 1136–1142.CrossRef Ren, Y., Zhang, B., Liu, Z., & Wang, J. (2007). Optimization of four kinds of constructed wetlands substrate combination treating domestic sewage. Wuhan University Journal of Natural Science, 12, 1136–1142.CrossRef
Zurück zum Zitat Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448.CrossRef Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448.CrossRef
Zurück zum Zitat Saeed, T., & Sun, G. (2013). A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresource Technology, 128, 438–447.CrossRef Saeed, T., & Sun, G. (2013). A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresource Technology, 128, 438–447.CrossRef
Zurück zum Zitat Seo, D. C., Cho, J. S., Lee, H. J., & Heo, J. S. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, 39, 2445–2457.CrossRef Seo, D. C., Cho, J. S., Lee, H. J., & Heo, J. S. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, 39, 2445–2457.CrossRef
Zurück zum Zitat Shao, Y., Pei, H., Hu, W., Chanway, C. P., Meng, P., Ji, Y., & Li, Z. (2014). Bioaugmentation in lab scale constructed wetland microcosms for treating polluted river water and domestic wastewater in northern China. International Biodeterioration and Biodegradation, 95, 151–159.CrossRef Shao, Y., Pei, H., Hu, W., Chanway, C. P., Meng, P., Ji, Y., & Li, Z. (2014). Bioaugmentation in lab scale constructed wetland microcosms for treating polluted river water and domestic wastewater in northern China. International Biodeterioration and Biodegradation, 95, 151–159.CrossRef
Zurück zum Zitat Sim, C. H., Eikaas, H. S., Chan, S. H., & Gan, J. (2011). Nutrient removal and plant biomass of 5 wetland plant species in Singapore. Water Practice Technology, 6, 2011053.CrossRef Sim, C. H., Eikaas, H. S., Chan, S. H., & Gan, J. (2011). Nutrient removal and plant biomass of 5 wetland plant species in Singapore. Water Practice Technology, 6, 2011053.CrossRef
Zurück zum Zitat Singh, S., Haberl, R., Moog, O., Shrestha, R. R., Shrestha, P., & Shrestha, R. (2009). Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—A model for DEWATS. Ecological Engineering, 35, 654–660.CrossRef Singh, S., Haberl, R., Moog, O., Shrestha, R. R., Shrestha, P., & Shrestha, R. (2009). Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—A model for DEWATS. Ecological Engineering, 35, 654–660.CrossRef
Zurück zum Zitat Stefanakis, A. I., & Tsihrintzis, V. A. (2012). Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chemical Engineering Journal, 181, 416–430.CrossRef Stefanakis, A. I., & Tsihrintzis, V. A. (2012). Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chemical Engineering Journal, 181, 416–430.CrossRef
Zurück zum Zitat Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Vertical flow constructed wetlands: Eco-engineering systems for wastewater and sludge treatment. Newnes Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Vertical flow constructed wetlands: Eco-engineering systems for wastewater and sludge treatment. Newnes
Zurück zum Zitat Sudarsan, J. S., Roy, R. L., Baskar, G., Deeptha, V. T., & Nithiyanantham, S. (2015). Domestic wastewater treatment performance using constructed wetland. Sustainable Water Resources Management, 1, 89–96.CrossRef Sudarsan, J. S., Roy, R. L., Baskar, G., Deeptha, V. T., & Nithiyanantham, S. (2015). Domestic wastewater treatment performance using constructed wetland. Sustainable Water Resources Management, 1, 89–96.CrossRef
Zurück zum Zitat Tao, W., & Wang, J. (2009). Effect of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems. Ecological Engineering, 35, 836–842.CrossRef Tao, W., & Wang, J. (2009). Effect of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems. Ecological Engineering, 35, 836–842.CrossRef
Zurück zum Zitat Truu, J., Nurk, K., Juhanson, J., & Mander, Ü. (2005). Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. Journal of Environmental Science and Health, 40, 1191–1200.CrossRef Truu, J., Nurk, K., Juhanson, J., & Mander, Ü. (2005). Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. Journal of Environmental Science and Health, 40, 1191–1200.CrossRef
Zurück zum Zitat Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. The Science of the Total Environment, 407, 3958–3971.CrossRef Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. The Science of the Total Environment, 407, 3958–3971.CrossRef
Zurück zum Zitat Tsihrintzis, V. A. (2017). The use of vertical flow constructed wetlands in wastewater treatment. Water Resources Management, 1–26. Tsihrintzis, V. A. (2017). The use of vertical flow constructed wetlands in wastewater treatment. Water Resources Management, 1–26.
Zurück zum Zitat Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25, 478–490.CrossRef Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25, 478–490.CrossRef
Zurück zum Zitat Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow. Hydrobiologia, 10, 738–749. Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow. Hydrobiologia, 10, 738–749.
Zurück zum Zitat Vymazal, J. (2013a). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582–592.CrossRef Vymazal, J. (2013a). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582–592.CrossRef
Zurück zum Zitat Vymazal, J. (2013b). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Research, 47, 4795–4811.CrossRef Vymazal, J. (2013b). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Research, 47, 4795–4811.CrossRef
Zurück zum Zitat Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ Int, 75, 11–20.CrossRef Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ Int, 75, 11–20.CrossRef
Zurück zum Zitat Vymazal, J., & Kröpfelová, L. (2009). Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. The Science of the Total Environment, 407, 3911–3922.CrossRef Vymazal, J., & Kröpfelová, L. (2009). Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. The Science of the Total Environment, 407, 3911–3922.CrossRef
Zurück zum Zitat Wallace, S., & Kadlec, R. (2005). BTEX degradation in a cold-climate wetland system. Water Science Technology, 51, 165–171.CrossRef Wallace, S., & Kadlec, R. (2005). BTEX degradation in a cold-climate wetland system. Water Science Technology, 51, 165–171.CrossRef
Zurück zum Zitat Wang, C. Y., & Sample, D. J. (2013). Assessing floating treatment wetlands nutrient removal performance through a first order kinetics model and statistical inference. Ecological Engineering, 61, 292–302.CrossRef Wang, C. Y., & Sample, D. J. (2013). Assessing floating treatment wetlands nutrient removal performance through a first order kinetics model and statistical inference. Ecological Engineering, 61, 292–302.CrossRef
Zurück zum Zitat Wang, G., Wang, Y., & Gao, Z. (2010). Use of steel slag as a granular material: Volume expansion prediction and usability criteria. Journal of Hazardous Materials, 184, 555–560.CrossRef Wang, G., Wang, Y., & Gao, Z. (2010). Use of steel slag as a granular material: Volume expansion prediction and usability criteria. Journal of Hazardous Materials, 184, 555–560.CrossRef
Zurück zum Zitat Wang, Y. C., Ko, C. H., Chang, F. C., Chen, P. Y., Liu, T. F., Sheu, Y. S., Shih, T. L., & Teng, C. J. (2011). Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass and Bioenergy, 35, 50–58.CrossRef Wang, Y. C., Ko, C. H., Chang, F. C., Chen, P. Y., Liu, T. F., Sheu, Y. S., Shih, T. L., & Teng, C. J. (2011). Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass and Bioenergy, 35, 50–58.CrossRef
Zurück zum Zitat Wang, H., Chen, Z. X., Zhang, X. Y., Zhu, S. X., Ge, Y., Chang, S. X., Zhang, C. B., Huang, C. C., & Chang, J. (2013). Plant species richness increased belowground plant biomass and substrate nitrogen removal in a constructed wetland. Clean Soil Air Water, 41, 657–664.CrossRef Wang, H., Chen, Z. X., Zhang, X. Y., Zhu, S. X., Ge, Y., Chang, S. X., Zhang, C. B., Huang, C. C., & Chang, J. (2013). Plant species richness increased belowground plant biomass and substrate nitrogen removal in a constructed wetland. Clean Soil Air Water, 41, 657–664.CrossRef
Zurück zum Zitat Wang, W., Ding, Y., Wang, Y., Song, X., Ambrose, R. F., Ullman, J. L., Winfrey, B. K., Wang, J., & Gong, J. (2016). Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifier biofortified constructed wetlands. Ecological Engineering, 94, 7–11.CrossRef Wang, W., Ding, Y., Wang, Y., Song, X., Ambrose, R. F., Ullman, J. L., Winfrey, B. K., Wang, J., & Gong, J. (2016). Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifier biofortified constructed wetlands. Ecological Engineering, 94, 7–11.CrossRef
Zurück zum Zitat Wang, X. J., Zhang, J. Y., Gao, J., Shahid, S., Xia, X. H., Geng, Z., & Tang, L. (2017). The new concept of water resources management in China: ensuring water security in changing environment. Environment Development Sustainability, 1–13. Wang, X. J., Zhang, J. Y., Gao, J., Shahid, S., Xia, X. H., Geng, Z., & Tang, L. (2017). The new concept of water resources management in China: ensuring water security in changing environment. Environment Development Sustainability, 1–13.
Zurück zum Zitat Wojciechowska, E., Gajewska, M., & Ostojski, A. (2017). Reliability of nitrogen removal processes in multi-stage treatment wetlands receiving high-strength wastewater. Ecological Engineering, 98, 365–371.CrossRef Wojciechowska, E., Gajewska, M., & Ostojski, A. (2017). Reliability of nitrogen removal processes in multi-stage treatment wetlands receiving high-strength wastewater. Ecological Engineering, 98, 365–371.CrossRef
Zurück zum Zitat Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research, 57, 40–55.CrossRef Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research, 57, 40–55.CrossRef
Zurück zum Zitat Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015a). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601.CrossRef Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015a). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601.CrossRef
Zurück zum Zitat Wu, H., Fan, J., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., & Liang, S. (2015b). Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresource Technology, 176, 163–168.CrossRef Wu, H., Fan, J., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., & Liang, S. (2015b). Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresource Technology, 176, 163–168.CrossRef
Zurück zum Zitat Wu, H., Fan, J., Zhang, J., Ngo, H. H., GuoW, L. S., Hu, Z., & Liu, H. (2015c). Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environmental Science and Pollution Research, 22, 14637–14650.CrossRef Wu, H., Fan, J., Zhang, J., Ngo, H. H., GuoW, L. S., Hu, Z., & Liu, H. (2015c). Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environmental Science and Pollution Research, 22, 14637–14650.CrossRef
Zurück zum Zitat Wu, H., Lin, L., Zhang, J., Guo, W., Liang, S., & Liu, H. (2016). Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. Bioresource Technology, 219, 768–772.CrossRef Wu, H., Lin, L., Zhang, J., Guo, W., Liang, S., & Liu, H. (2016). Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. Bioresource Technology, 219, 768–772.CrossRef
Zurück zum Zitat Xu, D., Xu, J., Wu, J., & Muhammad, A. (2006). Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 63, 344–352.CrossRef Xu, D., Xu, J., Wu, J., & Muhammad, A. (2006). Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 63, 344–352.CrossRef
Zurück zum Zitat Yamochi, S., Tanaka, T., Otani, Y., & Endo, T. (2017). Effects of light, temperature and ground water level on the CO2 flux of the sediment in the high water temperature seasons at the artificial north salt marsh of Osaka Nanko bird sanctuary, Japan. Ecological Engineering, 98, 330–338.CrossRef Yamochi, S., Tanaka, T., Otani, Y., & Endo, T. (2017). Effects of light, temperature and ground water level on the CO2 flux of the sediment in the high water temperature seasons at the artificial north salt marsh of Osaka Nanko bird sanctuary, Japan. Ecological Engineering, 98, 330–338.CrossRef
Zurück zum Zitat Yan, Y., & Xu, J. (2014). Improving winter performance of constructed wetlands for wastewater treatment in northern China: A review. Wetlands, 34, 243–253.CrossRef Yan, Y., & Xu, J. (2014). Improving winter performance of constructed wetlands for wastewater treatment in northern China: A review. Wetlands, 34, 243–253.CrossRef
Zurück zum Zitat Zhang, Z., Rengel, Z., & Meney, K. (2007). Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono-and mixed-culture in wetland microcosms. Water Air Soil Pollution, 183, 95–105.CrossRef Zhang, Z., Rengel, Z., & Meney, K. (2007). Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono-and mixed-culture in wetland microcosms. Water Air Soil Pollution, 183, 95–105.CrossRef
Zurück zum Zitat Zhang, C. B., Wang, J., Liu, W. L., Zhu, S. X., Ge, H. L., Chang, S. X., Chang, J., & Ge, Y. (2010). Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering, 36, 62–68.CrossRef Zhang, C. B., Wang, J., Liu, W. L., Zhu, S. X., Ge, H. L., Chang, S. X., Chang, J., & Ge, Y. (2010). Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering, 36, 62–68.CrossRef
Zurück zum Zitat Zhang, T., Xu, D., He, F., Zhang, Y., & Wu, Z. (2012). Application of constructed wetland for water pollution control in China during 1990-2010. Ecological Engineering, 47, 189–197.CrossRef Zhang, T., Xu, D., He, F., Zhang, Y., & Wu, Z. (2012). Application of constructed wetland for water pollution control in China during 1990-2010. Ecological Engineering, 47, 189–197.CrossRef
Zurück zum Zitat Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Ng, W. J., & Tan, S. K. (2014). Application of constructed wetlands for wastewater treatment in developing countries–a review of recent developments (2000–2013). Journal of Environmental Management, 141, 116–131.CrossRef Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Ng, W. J., & Tan, S. K. (2014). Application of constructed wetlands for wastewater treatment in developing countries–a review of recent developments (2000–2013). Journal of Environmental Management, 141, 116–131.CrossRef
Zurück zum Zitat Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Tan, S. K., & Ng, W. J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). Journal of Environmental Sciences, 30, 30–46.CrossRef Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Tan, S. K., & Ng, W. J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). Journal of Environmental Sciences, 30, 30–46.CrossRef
Zurück zum Zitat Zhang, Y., Carvalho, P. N., Lv, T., Arias, C., Brix, H., & Chen, Z. (2016). Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Science & Technology, 73, 679–686.CrossRef Zhang, Y., Carvalho, P. N., Lv, T., Arias, C., Brix, H., & Chen, Z. (2016). Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Science & Technology, 73, 679–686.CrossRef
Zurück zum Zitat Zhao, Y. J., Liu, B., Zhang, W. G., Ouyang, Y., & An, S. Q. (2010). Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage. Bioresource Technology, 101, 1693–1700.CrossRef Zhao, Y. J., Liu, B., Zhang, W. G., Ouyang, Y., & An, S. Q. (2010). Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage. Bioresource Technology, 101, 1693–1700.CrossRef
Zurück zum Zitat Zhao, Y. J., Hui, Z., Chao, X., Nie, E., Li, H. J., He, J., & Zheng, Z. (2011). Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecological Engineering, 37, 1546–1554.CrossRef Zhao, Y. J., Hui, Z., Chao, X., Nie, E., Li, H. J., He, J., & Zheng, Z. (2011). Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecological Engineering, 37, 1546–1554.CrossRef
Zurück zum Zitat Zhao, Y., Zhang, Y., Ge, Z., Hu, C., & Zhang, H. (2014). Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater. Environmental Science: Processes & Impacts, 16, 567–575. Zhao, Y., Zhang, Y., Ge, Z., Hu, C., & Zhang, H. (2014). Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater. Environmental Science: Processes & Impacts, 16, 567–575.
Zurück zum Zitat Zhao, Z., Chang, J., Han, W., Wang, M., Ma, D., Du, Y., Qu, Z., Chang, S. X., & Ge, Y. (2016a). Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands. Ecological Engineering, 95, 390–398.CrossRef Zhao, Z., Chang, J., Han, W., Wang, M., Ma, D., Du, Y., Qu, Z., Chang, S. X., & Ge, Y. (2016a). Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands. Ecological Engineering, 95, 390–398.CrossRef
Zurück zum Zitat Zhao, X., Yang, J., Bai, S., Ma, F., & Wang, L. (2016b). Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10.C. Bioresource Technology, 205, 166–173.CrossRef Zhao, X., Yang, J., Bai, S., Ma, F., & Wang, L. (2016b). Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10.C. Bioresource Technology, 205, 166–173.CrossRef
Zurück zum Zitat Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface flow constructed wetlands in north-western China. Ecological Engineering, 83, 268–275.CrossRef Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface flow constructed wetlands in north-western China. Ecological Engineering, 83, 268–275.CrossRef
Zurück zum Zitat Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H. H., Guo, W., Ge, Y., & Xiong, J. (2016). Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Technology, 207, 134–141.CrossRef Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H. H., Guo, W., Ge, Y., & Xiong, J. (2016). Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Technology, 207, 134–141.CrossRef
Zurück zum Zitat Zhu, H., Yan, B., Xu, Y., Guan, J., & Liu, S. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 63, 58–63.CrossRef Zhu, H., Yan, B., Xu, Y., Guan, J., & Liu, S. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 63, 58–63.CrossRef
Metadaten
Titel
Efficiency of Constructed Wetland Microcosms (CWMs) for the Treatment of Domestic Wastewater Using Aquatic Macrophytes
verfasst von
Saroj Kumar
Venkatesh Dutta
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7284-0_11