Skip to main content

2017 | OriginalPaper | Buchkapitel

Efficient Anomaly Detection System for Video Surveillance Application in WVSN with Particle Swarm Optimization

verfasst von : S. Radha, S. Aasha Nandhini, R. Hemalatha

Erschienen in: Computational Intelligence in Wireless Sensor Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks consist of several tiny low cost sensor nodes that are deployed for many applications such as military, civil, industrial, healthcare, home automation, etc. Recent technological developments have enabled the use of wireless visual sensor networks (WVSNs) for sensitive applications such as video surveillance and monitoring applications. Limited memory, energy and bandwidth are the major constraints in WVSN that can be simplified by the use of compressed sensing (CS), which asserts that sparse signals can be reconstructed from very few measurements. CS a computational intelligence solution is about acquiring and recovering the signal in the most efficient manner possible using incoherent projection basis. In the case of video surveillance applications, the entire video may not be useful hence, with the help of efficient algorithms the presence of the anomalies can be detected and transmitted to help user at the monitoring site to take necessary action. In this chapter, particle swarm optimization (PSO) based efficient anomaly detection system (EADS) is proposed which will detect the presence of anomalies and transmit the required measurements via TelosB nodes to the network operator. This system adopts the concept of CS to obtain the compressive measurements so that the object detection algorithm can be applied to the measurements rather than samples. PSO is employed for optimizing compressive measurements while a mean based measurement differencing approach is used for detecting the object. This proposed efficient system has the intelligence of detecting targets with fewer measurements and transmit the required compressive measurements for reconstruction with less energy, thereby increasing the network lifetime. PSO is used to optimize the transmission distance with minimum number of hops towards destination, to achieve reduced energy consumption. However, the lifetime of the network is still bounded by batteries, the sole source of energy in WVSNs. Alternative energy utilization can be effectively included to recharge the batteries on-board and extend the lifetime of the network. Solar energy harvesting forms an effective resource due to its ambient presence. Hence, solar energy harvester is incorporated in the proposed EADS to extend its lifetime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ye, Y., et al.: Wireless video surveillance: a survey. IEEE Access 1, 646–660 (2013)CrossRef Ye, Y., et al.: Wireless video surveillance: a survey. IEEE Access 1, 646–660 (2013)CrossRef
2.
Zurück zum Zitat Baraniuk, R.: A lecture compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRef Baraniuk, R.: A lecture compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRef
3.
Zurück zum Zitat Candes, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians. European Mathematical Society, Madrid (2006) Candes, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians. European Mathematical Society, Madrid (2006)
4.
Zurück zum Zitat Hemalatha, R., Radha, S., Sudharsan, S.: Energy-efficient image transmission in wireless multimedia sensor networks using block-based. Compress. Sens. Comput. Electr. Eng. 44, 67–79 (2015)CrossRef Hemalatha, R., Radha, S., Sudharsan, S.: Energy-efficient image transmission in wireless multimedia sensor networks using block-based. Compress. Sens. Comput. Electr. Eng. 44, 67–79 (2015)CrossRef
6.
Zurück zum Zitat Wang, Q., Liu, Z.: A robust and efficient algorithm for distributed compressed sensing. Comput. Electr. Eng. 37(6), 916–926 (2011)CrossRefMATH Wang, Q., Liu, Z.: A robust and efficient algorithm for distributed compressed sensing. Comput. Electr. Eng. 37(6), 916–926 (2011)CrossRefMATH
7.
Zurück zum Zitat Lei, J.: Generalized reconstruction algorithm for compressed sensing. Comput. Electr. Eng. 37(4), 570–588 (2011)CrossRefMATH Lei, J.: Generalized reconstruction algorithm for compressed sensing. Comput. Electr. Eng. 37(4), 570–588 (2011)CrossRefMATH
8.
Zurück zum Zitat Hassanien, A.-E., Abraham, A. (eds.): Computational Intelligence in Multimedia Processing: Recent Advances, vol. 96. Springer, Berlin (2008) Hassanien, A.-E., Abraham, A. (eds.): Computational Intelligence in Multimedia Processing: Recent Advances, vol. 96. Springer, Berlin (2008)
9.
Zurück zum Zitat Kulkarni, R.V., Forster, A., Venayagamoorthy, G.K.: Computational intelligence in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 13(1), 68–96 (2011). (First Quarter)CrossRef Kulkarni, R.V., Forster, A., Venayagamoorthy, G.K.: Computational intelligence in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 13(1), 68–96 (2011). (First Quarter)CrossRef
10.
Zurück zum Zitat Mendis, C., Guru, S.M., Halgamuge, S., Fernando, S.: Optimized sink node path using particle swarm optimization. In: Advanced Information Networking and Applications, 2006. AINA 2006. 20th International Conference on, vol. 2(5), pp. 18–20 (2006). doi:10.1109/AINA.2006.254 Mendis, C., Guru, S.M., Halgamuge, S., Fernando, S.: Optimized sink node path using particle swarm optimization. In: Advanced Information Networking and Applications, 2006. AINA 2006. 20th International Conference on, vol. 2(5), pp. 18–20 (2006). doi:10.​1109/​AINA.​2006.​254
11.
Zurück zum Zitat Ngatchou, P.N., Fox, W.L.J., El-Sharkawi, M.: Distributed sensor placement with sequential particle swarm optimization. In: IEEE Proceedings on Swarm Intelligence Symposium, SIS (2005) Ngatchou, P.N., Fox, W.L.J., El-Sharkawi, M.: Distributed sensor placement with sequential particle swarm optimization. In: IEEE Proceedings on Swarm Intelligence Symposium, SIS (2005)
12.
Zurück zum Zitat Salas, V., Barrado, A., Lazaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Mater. Solar Cells 90, 1555–1578 (2006)CrossRef Salas, V., Barrado, A., Lazaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Mater. Solar Cells 90, 1555–1578 (2006)CrossRef
13.
Zurück zum Zitat Sarvi, M., Ahmadi, S., Abdi, S.: A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions. Prog. Photovolt. Res. Appl. 23(2), 201–214 (2015)CrossRef Sarvi, M., Ahmadi, S., Abdi, S.: A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions. Prog. Photovolt. Res. Appl. 23(2), 201–214 (2015)CrossRef
14.
Zurück zum Zitat Abdulkadir, M., Yatim, A.H.M., Yusuf, S.T.: An improved PSO-based MPPT control strategy for photovoltaic systems. Int. J. Photoenergy (2014), Article ID 818232 Abdulkadir, M., Yatim, A.H.M., Yusuf, S.T.: An improved PSO-based MPPT control strategy for photovoltaic systems. Int. J. Photoenergy (2014), Article ID 818232
15.
Zurück zum Zitat Joseph, P., Robert, S., David, C.: Telos: enabling ultra-low power wireless research. In: Proceedings of 4th International Symposium on information Processing in Sensor Networks, Los Angeles, CA, pp. 364–369 (2005) Joseph, P., Robert, S., David, C.: Telos: enabling ultra-low power wireless research. In: Proceedings of 4th International Symposium on information Processing in Sensor Networks, Los Angeles, CA, pp. 364–369 (2005)
16.
Zurück zum Zitat Yi, Z., Liangzhong, F.: Moving object detection based on running average background and temporal difference. In: International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 270–272. IEEE (2010) Yi, Z., Liangzhong, F.: Moving object detection based on running average background and temporal difference. In: International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 270–272. IEEE (2010)
17.
Zurück zum Zitat Cevher, V., Sankaranarayanan, A., Duarte, M.F., Reddy, D., Baraniuk, R.G., Chellappa, R.: Compressive sensing for background subtraction. In: Computer Vision—ECCV 2008, pp. 155–168. Springer, Berlin (2008) Cevher, V., Sankaranarayanan, A., Duarte, M.F., Reddy, D., Baraniuk, R.G., Chellappa, R.: Compressive sensing for background subtraction. In: Computer Vision—ECCV 2008, pp. 155–168. Springer, Berlin (2008)
18.
Zurück zum Zitat Chen, S., Donoho, D.: Basis pursuit. In: Signals, Systems and Computers. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on, vol. 1. IEEE (1994) Chen, S., Donoho, D.: Basis pursuit. In: Signals, Systems and Computers. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on, vol. 1. IEEE (1994)
19.
Zurück zum Zitat Tropp, J., Gilbert, A.: Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH Tropp, J., Gilbert, A.: Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)MathSciNetCrossRefMATH Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)MathSciNetCrossRefMATH Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pp. 3869–3872. IEEE (2008) Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pp. 3869–3872. IEEE (2008)
23.
Zurück zum Zitat Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, New York (2004)MATH Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, New York (2004)MATH
24.
Zurück zum Zitat Jeyakumar, D.N., Jayabarathi, T., Raghunathan, T.: Particle swarm optimization for various types of economic dispatch problems. Int. J. Electr. Power Energy Syst. 28(1), 36–42 (2006)CrossRef Jeyakumar, D.N., Jayabarathi, T., Raghunathan, T.: Particle swarm optimization for various types of economic dispatch problems. Int. J. Electr. Power Energy Syst. 28(1), 36–42 (2006)CrossRef
25.
Zurück zum Zitat Yang, S., Zhu, W., Chen, L.: Particle swarm learning algorithm based on adjustment of parameter and its applications assessment of agricultural projects. In: Computer and Computing Technologies in Agriculture II, vol. 2, pp. 1379–1388. Springer, Berlin (2008) Yang, S., Zhu, W., Chen, L.: Particle swarm learning algorithm based on adjustment of parameter and its applications assessment of agricultural projects. In: Computer and Computing Technologies in Agriculture II, vol. 2, pp. 1379–1388. Springer, Berlin (2008)
26.
Zurück zum Zitat Zhang, J., Wang, B., Zhang, X., Huang, D.S., Zhang, X., Reyes García, C., Zhang, L.: Advanced Intelligent Computing Theories and Applications. Springer, Berlin (2010) Zhang, J., Wang, B., Zhang, X., Huang, D.S., Zhang, X., Reyes García, C., Zhang, L.: Advanced Intelligent Computing Theories and Applications. Springer, Berlin (2010)
27.
Zurück zum Zitat Mini, S., Udgata, S.K., Sabat, S.L.: Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sens. J. 14(3), 636–644 (2014)CrossRef Mini, S., Udgata, S.K., Sabat, S.L.: Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sens. J. 14(3), 636–644 (2014)CrossRef
28.
Zurück zum Zitat Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995) Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)
29.
Zurück zum Zitat Walker, G.: Evaluating MPPT converter topologies using a Matlab PV model. J. Electr. Electron. Eng. 21(1), 49–56 (2001) Walker, G.: Evaluating MPPT converter topologies using a Matlab PV model. J. Electr. Electron. Eng. 21(1), 49–56 (2001)
30.
Zurück zum Zitat Tremblay, O., Dessaint, L.A.: Experimental validation of a battery dynamic model for EV applications. World Electric Veh. J. 3, 1–10 (2009) Tremblay, O., Dessaint, L.A.: Experimental validation of a battery dynamic model for EV applications. World Electric Veh. J. 3, 1–10 (2009)
34.
Zurück zum Zitat Cao, Y., Lei, Z., Huang, X., Zhang, Z., Zhong, T.: A vehicle detection algorithm based on compressive sensing and background subtraction. AASRI Proc. 1, 480–485 (2012)CrossRef Cao, Y., Lei, Z., Huang, X., Zhang, Z., Zhong, T.: A vehicle detection algorithm based on compressive sensing and background subtraction. AASRI Proc. 1, 480–485 (2012)CrossRef
35.
Zurück zum Zitat Smitha, H., Palanisamy, V.. Detection of stationary foreground objects in region of interest from traffic video sequences. Int. J. Comput. Sci. Issues (IJCSI) 9(2) (2012) Smitha, H., Palanisamy, V.. Detection of stationary foreground objects in region of interest from traffic video sequences. Int. J. Comput. Sci. Issues (IJCSI) 9(2) (2012)
36.
Zurück zum Zitat Dunkels, A., Eriksson, J., Finne, N., Tsiftes, N.: Powertrace: Network-Level Power Profiling for Lowpower Wireless Networks, Technical Report T2011:05. SICS (2011) Dunkels, A., Eriksson, J., Finne, N., Tsiftes, N.: Powertrace: Network-Level Power Profiling for Lowpower Wireless Networks, Technical Report T2011:05. SICS (2011)
38.
Zurück zum Zitat Huaming, W., Alhussein, A.A.: Energy efficient distributed image compression in resource constrained multihop wireless networks. Comput. Commun. 28, 1658–1668 (2005)CrossRef Huaming, W., Alhussein, A.A.: Energy efficient distributed image compression in resource constrained multihop wireless networks. Comput. Commun. 28, 1658–1668 (2005)CrossRef
Metadaten
Titel
Efficient Anomaly Detection System for Video Surveillance Application in WVSN with Particle Swarm Optimization
verfasst von
S. Radha
S. Aasha Nandhini
R. Hemalatha
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47715-2_7