Skip to main content
Erschienen in: Journal of Cryptology 1/2017

30.12.2015

Efficient One-Sided Adaptively Secure Computation

verfasst von: Carmit Hazay, Arpita Patra

Erschienen in: Journal of Cryptology | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Adaptive security is a strong security notion that captures additional security threats that are not addressed by static corruptions. For instance, it captures real-world scenarios where “hackers” actively break into computers, possibly while they are executing secure protocols. Studying this setting is interesting from both theoretical and practical points of view. A primary building block in designing adaptively secure protocols is a non-committing encryption (NCE) that implements secure communication channels in the presence of adaptive corruptions. Current constructions require a number of public key operations that grow linearly with the length of the message. Furthermore, general two-party protocols require a number of NCE calls that dependent both on the circuit size and on the security parameter. In this paper, we study the two-party setting in which at most one of the parties is adaptively corrupted, and demonstrate the feasibility of (1) NCE with constant number of public key operations for large message spaces, (2) oblivious transfer with constant number of public key operations for large sender’s input spaces, and (3) constant round secure computation protocols with an overall number of public key operations that is linear in the circuit size. Our study demonstrates that such primitives indeed exist in the presence of single corruptions without erasures, while this is not known for fully adaptive security under standard assumptions (where both parties may get corrupted). Our results are shown in the UC setting with a CRS setup.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We note that this statement is valid regarding protocols that do not employ fully homomorphic encryptions (FHE). To this end, we only consider protocols that do not take the FHE approach. As a side note, it was recently observed in [39] that adaptive security is impossible for FHE satisfying compactness.
 
2
We stress that the semi-adaptive notion is incomparable to the one-sided notion since the former assumes that either one party is statically corrupted or none of the parties get corrupted.
 
3
The actual key pair used in the circuit garbling is derived from \((g^{a^0_i c_j},g^{a^1_i c_j})\) using an extractor. A universal hash function is used in [42] for this purpose, where the seeds for the function are picked by \(P_0\) before it knows \(\mathcal{J}\).
 
4
At this point \(P_0\) is committed to all the keys associated with the s circuits.
 
5
This notation covers many basic relations such as discrete logarithm and quadratic residuosity.
 
6
Note that the simulator returns the entire view for the proof from which we extract the first message.
 
Literatur
1.
Zurück zum Zitat R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation, in EUROCRYPT (2011), pp. 169–188. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation, in EUROCRYPT (2011), pp. 169–188.
2.
Zurück zum Zitat D. Beaver. Plug and play encryption, in CRYPTO (1997), pp. 75–89. D. Beaver. Plug and play encryption, in CRYPTO (1997), pp. 75–89.
3.
Zurück zum Zitat D. Beaver, and S. Haber. Cryptographic protocols provably secure against dynamic adversaries, in EUROCRYPT (1992), pp. 307–323. D. Beaver, and S. Haber. Cryptographic protocols provably secure against dynamic adversaries, in EUROCRYPT (1992), pp. 307–323.
4.
Zurück zum Zitat M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment secure under selective opening, in EUROCRYPT (2009), pp. 1–35. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment secure under selective opening, in EUROCRYPT (2009), pp. 1–35.
5.
Zurück zum Zitat D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract), in STOC (1990), pp. 503–513. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract), in STOC (1990), pp. 503–513.
6.
Zurück zum Zitat R. Canetti. Universally composable security: a new paradigm for cryptographic protocols, in FOCS (2001), pp. 136–145. R. Canetti. Universally composable security: a new paradigm for cryptographic protocols, in FOCS (2001), pp. 136–145.
7.
Zurück zum Zitat R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin. Adaptive versus non-adaptive security of multi-party protocols. J. Cryptology, 17(3):153–207, 2004. R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin. Adaptive versus non-adaptive security of multi-party protocols. J. Cryptology, 17(3):153–207, 2004.
8.
Zurück zum Zitat R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols, in CRYPTO (1994), pp. 174–187. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols, in CRYPTO (1994), pp. 174–187.
9.
Zurück zum Zitat S.G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing encryption with applications to adaptively secure protocols, in ASIACRYPT (2009), pp. 287–302. S.G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing encryption with applications to adaptively secure protocols, in ASIACRYPT (2009), pp. 287–302.
10.
Zurück zum Zitat S.G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Simple, black-box constructions of adaptively secure protocols, in TCC (2009), pp. 387–402. S.G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Simple, black-box constructions of adaptively secure protocols, in TCC (2009), pp. 387–402.
11.
Zurück zum Zitat R. Canetti, and M. Fischlin. Universally composable commitments, in Proceedings of Advances in Cryptology—CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA (Aug. 19–23, 2001), pp. 19–40. R. Canetti, and M. Fischlin. Universally composable commitments, in Proceedings of Advances in Cryptology—CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA (Aug. 19–23, 2001), pp. 19–40.
12.
Zurück zum Zitat R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation, in STOC (1996), pp. 639–648. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation, in STOC (1996), pp. 639–648.
13.
Zurück zum Zitat R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party computation from indistinguishability obfuscation, in TCC (2015), pp. 557–585. R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party computation from indistinguishability obfuscation, in TCC (2015), pp. 557–585.
14.
Zurück zum Zitat R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key encryption, in TCC (2005), pp. 150–168. R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key encryption, in TCC (2005), pp. 150–168.
15.
Zurück zum Zitat R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computation, in STOC (2002). R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computation, in STOC (2002).
16.
Zurück zum Zitat R. Cramer, and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption, in EUROCRYPT (2002), pp. 45–64. R. Cramer, and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption, in EUROCRYPT (2002), pp. 45–64.
17.
Zurück zum Zitat Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using the CBC, cascade and HMAC modes, in CRYPTO (2004), pp. 494–510. Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using the CBC, cascade and HMAC modes, in CRYPTO (2004), pp. 494–510.
18.
Zurück zum Zitat I. Damgård, and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom generator, in CRYPTO (2005), pp. 378–394. I. Damgård, and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom generator, in CRYPTO (2005), pp. 378–394.
19.
Zurück zum Zitat I. Damgård, and M. Jurik. A length-flexible threshold cryptosystem with applications, in ACISP (2003), pp. 350–364. I. Damgård, and M. Jurik. A length-flexible threshold cryptosystem with applications, in ACISP (2003), pp. 350–364.
20.
Zurück zum Zitat I. Damgård, M. Jurik, and J.B. Nielsen. A generalization of Paillier’s public-key system with applications to electronic voting. Int. J. Inf. Sec., 9(6):371–385, 2010. I. Damgård, M. Jurik, and J.B. Nielsen. A generalization of Paillier’s public-key system with applications to electronic voting. Int. J. Inf. Sec., 9(6):371–385, 2010.
21.
Zurück zum Zitat D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multiparty computation in constant rounds, in TCC (2015), pp. 586–613. D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multiparty computation in constant rounds, in TCC (2015), pp. 586–613.
22.
Zurück zum Zitat I. Damgård, and J.B. Nielsen. Improved non-committing encryption schemes based on a general complexity assumption, in CRYPTO (2000), pp. 432–450. I. Damgård, and J.B. Nielsen. Improved non-committing encryption schemes based on a general complexity assumption, in CRYPTO (2000), pp. 432–450.
23.
Zurück zum Zitat I. Damgård, and J.B. Nielsen. Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor, in CRYPTO (2002), pp. 581–596. I. Damgård, and J.B. Nielsen. Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor, in CRYPTO (2002), pp. 581–596.
24.
Zurück zum Zitat I. Damgård, and J.B. Nielsen. Universally composable efficient multiparty computation from threshold homomorphic encryption, in CRYPTO (2003), pp. 247–264. I. Damgård, and J.B. Nielsen. Universally composable efficient multiparty computation from threshold homomorphic encryption, in CRYPTO (2003), pp. 247–264.
25.
Zurück zum Zitat I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption, in CRYPTO (2012), pp. 643–662. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption, in CRYPTO (2012), pp. 643–662.
26.
Zurück zum Zitat O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems for np. J. Cryptology, 9(3):167–190, 1996. O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems for np. J. Cryptology, 9(3):167–190, 1996.
27.
Zurück zum Zitat O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority, in STOC (1987), pp. 218–229. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority, in STOC (1987), pp. 218–229.
28.
Zurück zum Zitat O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
29.
Zurück zum Zitat S. Garg, and A. Polychroniadou. Two-round adaptively secure MPC from indistinguishability obfuscation, in TCC (2015), pp. 614–637. S. Garg, and A. Polychroniadou. Two-round adaptively secure MPC from indistinguishability obfuscation, in TCC (2015), pp. 614–637.
30.
Zurück zum Zitat S. Garg, and A. Sahai. Adaptively secure multi-party computation with dishonest majority, in CRYPTO (2012), pp. 105–123. S. Garg, and A. Sahai. Adaptively secure multi-party computation with dishonest majority, in CRYPTO (2012), pp. 105–123.
31.
Zurück zum Zitat J.A. Garay, D. Wichs, and H.-S. Zhou. Somewhat non-committing encryption and efficient adaptively secure oblivious transfer, in CRYPTO (2009), pp. 505–523. J.A. Garay, D. Wichs, and H.-S. Zhou. Somewhat non-committing encryption and efficient adaptively secure oblivious transfer, in CRYPTO (2009), pp. 505–523.
32.
Zurück zum Zitat J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
33.
Zurück zum Zitat B. Hemenway, R. Ostrovsky, and A. Rosen. Non-committing encryption from \(\Phi \)-hiding, in TCC (2015), pp. 591–608. B. Hemenway, R. Ostrovsky, and A. Rosen. Non-committing encryption from \(\Phi \)-hiding, in TCC (2015), pp. 591–608.
34.
Zurück zum Zitat C. Hazay, and A. Patra. One-sided adaptively secure two-party computation, in TCC (2014), pp. 368–393. C. Hazay, and A. Patra. One-sided adaptively secure two-party computation, in TCC (2014), pp. 368–393.
35.
Zurück zum Zitat Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer—efficiently, in CRYPTO (2008), pp. 572–591. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer—efficiently, in CRYPTO (2008), pp. 572–591.
36.
Zurück zum Zitat S. Jarecki, and A. Lysyanskaya. Adaptively secure threshold cryptography: Introducing concurrency, removing erasures, in EUROCRYPT (2000), pp. 221–242. S. Jarecki, and A. Lysyanskaya. Adaptively secure threshold cryptography: Introducing concurrency, removing erasures, in EUROCRYPT (2000), pp. 221–242.
37.
Zurück zum Zitat J. Katz, and R. Ostrovsky. Round-optimal secure two-party computation, in CRYPTO (2004), pp. 335–354. J. Katz, and R. Ostrovsky. Round-optimal secure two-party computation, in CRYPTO (2004), pp. 335–354.
38.
Zurück zum Zitat J. Katz, A. Thiruvengadam, and H.-S. Zhou. Feasibility and infeasibility of adaptively secure fully homomorphic encryption, in Public Key Cryptography (2013), pp. 14–31. J. Katz, A. Thiruvengadam, and H.-S. Zhou. Feasibility and infeasibility of adaptively secure fully homomorphic encryption, in Public Key Cryptography (2013), pp. 14–31.
39.
Zurück zum Zitat Y. Lindell. Adaptively secure two-party computation with erasures, in CT-RSA (2009), pp. 117–132. Y. Lindell. Adaptively secure two-party computation with erasures, in CT-RSA (2009), pp. 117–132.
40.
Zurück zum Zitat Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology, 22(2):161–188, 2009.MathSciNetCrossRefMATH Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology, 22(2):161–188, 2009.MathSciNetCrossRefMATH
41.
Zurück zum Zitat Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptology, 25(4):680–722, 2012. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptology, 25(4):680–722, 2012.
42.
Zurück zum Zitat Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adversaries. J. Cryptology, 28(2):312–350, 2015. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adversaries. J. Cryptology, 28(2):312–350, 2015.
43.
Zurück zum Zitat J.B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case, in CRYPTO (2002), pp. 111–126. J.B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case, in CRYPTO (2002), pp. 111–126.
44.
Zurück zum Zitat J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S.S. Burra. A new approach to practical active-secure two-party computation, in CRYPTO (2012), pp. 681–700. J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S.S. Burra. A new approach to practical active-secure two-party computation, in CRYPTO (2012), pp. 681–700.
45.
Zurück zum Zitat M. Naor, and O. Reingold. Synthesizers and their application to the parallel construction of psuedo-random functions, in FOCS (1995), pp. 170–181. M. Naor, and O. Reingold. Synthesizers and their application to the parallel construction of psuedo-random functions, in FOCS (1995), pp. 170–181.
46.
Zurück zum Zitat P. Paillier. Public-key cryptosystems based on composite degree residuosity classes, in EUROCRYPT (1999), pp. 223–238. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes, in EUROCRYPT (1999), pp. 223–238.
47.
Zurück zum Zitat C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer, in CRYPTO (2008), pp. 554–571. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer, in CRYPTO (2008), pp. 554–571.
48.
Zurück zum Zitat C.-P. Schnorr. Efficient identification and signatures for smart cards, in CRYPTO (1989), pp. 239–252. C.-P. Schnorr. Efficient identification and signatures for smart cards, in CRYPTO (1989), pp. 239–252.
49.
Zurück zum Zitat M.N. Wegman J.L. Carter. Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143–154, 1979. M.N. Wegman J.L. Carter. Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143–154, 1979.
50.
Zurück zum Zitat S. Wolf, and J. Wullschleger. Oblivious transfer is symmetric, in EUROCRYPT (2006), pp. 222–232. S. Wolf, and J. Wullschleger. Oblivious transfer is symmetric, in EUROCRYPT (2006), pp. 222–232.
51.
Zurück zum Zitat A.C. Yao. Protocols for secure computations (extended abstract), in FOCS (1982), pp. 160–164. A.C. Yao. Protocols for secure computations (extended abstract), in FOCS (1982), pp. 160–164.
Metadaten
Titel
Efficient One-Sided Adaptively Secure Computation
verfasst von
Carmit Hazay
Arpita Patra
Publikationsdatum
30.12.2015
Verlag
Springer US
Erschienen in
Journal of Cryptology / Ausgabe 1/2017
Print ISSN: 0933-2790
Elektronische ISSN: 1432-1378
DOI
https://doi.org/10.1007/s00145-015-9222-4

Weitere Artikel der Ausgabe 1/2017

Journal of Cryptology 1/2017 Zur Ausgabe

Premium Partner