Skip to main content

2023 | OriginalPaper | Buchkapitel

Electrical Properties of Conductive Concrete Containing Graphite

verfasst von : K. I. M. Iqbal, Paul Y. Choi, Nazmul Islam, Philip Park

Erschienen in: Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrically conductive concrete has various potential non-structural functions such as self-sensing and electromagnetic shielding. Conventional concrete is a non-conductive composite, but electrical conductivity can be imparted and controlled by adding conductive additives. Since conductive concrete is a composite containing moisture and discrete conductive additives, the electrical properties of conductive concrete are very complex in nature. Understanding these properties are the fundamental requirements for developing its non-structural applications. In this research, graphite powder is used as a conductive additive for concrete with 3% by volume of cement paste. For characterizing the electrical properties, both AC (Alternating Current) impedance analysis and DC (Direct Current) measurement is performed in both wet and dry conditions, and their resistivities are calculated. The resistivity measured using DC increased with time of measurement. On the other hand, AC measurements show a consistent Bode diagram, but the resistivities decrease with the increase in AC frequency. These indicate conductive concrete with graphite is acting like a circuit containing a capacitor that stores electrical energy. Moisture plays a significant role in the electrical properties of concrete. The resistivity of concrete is lower in wet (saturated surface dry) conditions than in dry conditions. The results show that the electrical properties of conductive concrete cannot be represented by a single resistivity value and AC impedance spectroscopy is a useful method to characterize the electrical properties of concrete.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Baeza FJ, Galao O, Zornoza E, Garcés P (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials 6:841–855CrossRef Baeza FJ, Galao O, Zornoza E, Garcés P (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials 6:841–855CrossRef
3.
Zurück zum Zitat Cabeza M, Keddam M, Nóvoa XR, Sánchez I, Takenouti H (2006) Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochim Acta 51:1831–1841CrossRef Cabeza M, Keddam M, Nóvoa XR, Sánchez I, Takenouti H (2006) Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochim Acta 51:1831–1841CrossRef
4.
Zurück zum Zitat Coppola L, Buoso A, Corazza F (2013) The influence of AC and DC electrical resistance and piezoresistivity measurements of CNTs/cement composites. In: The boundaries of structural concrete, Session B, ImReady Coppola L, Buoso A, Corazza F (2013) The influence of AC and DC electrical resistance and piezoresistivity measurements of CNTs/cement composites. In: The boundaries of structural concrete, Session B, ImReady
5.
Zurück zum Zitat Chen M, Gao P, Geng F, Zhang L, Liu H (2017) Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr Build Mater 142:320–327CrossRef Chen M, Gao P, Geng F, Zhang L, Liu H (2017) Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr Build Mater 142:320–327CrossRef
6.
Zurück zum Zitat Dehghanpour H, Yilmaz K (2020) The relationship between resistances measured by two-probe, Wenner probe and C1760–12 ASTM methods in electrically conductive concretes. SN Appl Sci 2(1):10CrossRef Dehghanpour H, Yilmaz K (2020) The relationship between resistances measured by two-probe, Wenner probe and C1760–12 ASTM methods in electrically conductive concretes. SN Appl Sci 2(1):10CrossRef
7.
Zurück zum Zitat Demircilioğlu E, Teomete E, Schlangen E, Baeza FJ (2019) Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Constr Build Mater 224:420–427 Demircilioğlu E, Teomete E, Schlangen E, Baeza FJ (2019) Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Constr Build Mater 224:420–427
8.
Zurück zum Zitat Ding Y, Huang Y, Zhang Y, Jalali S, Aguiar JB (2015) Self-monitoring of freeze–thaw damage using triphasic electric conductive concrete. Constr Build Mater 101:440–446CrossRef Ding Y, Huang Y, Zhang Y, Jalali S, Aguiar JB (2015) Self-monitoring of freeze–thaw damage using triphasic electric conductive concrete. Constr Build Mater 101:440–446CrossRef
9.
Zurück zum Zitat Dehghanpour H, Yilmaz K (2020) Investigation of specimen size, geometry and temperature effects on resistivity of electrically conductive concretes. Constr Build Mater 250:118864 Dehghanpour H, Yilmaz K (2020) Investigation of specimen size, geometry and temperature effects on resistivity of electrically conductive concretes. Constr Build Mater 250:118864
10.
Zurück zum Zitat Ding Y, Chen Z, Han Z, Zhang Y, Pacheco-Torgal F (2013) Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Constr Build Mater 43:233–241CrossRef Ding Y, Chen Z, Han Z, Zhang Y, Pacheco-Torgal F (2013) Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Constr Build Mater 43:233–241CrossRef
11.
Zurück zum Zitat Gomis J, Galao O, Gomis V, Zornoza E, Garcés P (2015) Self-heating and deicing conductive cement. Experimental study and modeling. Constr Build Mater 75:442–449CrossRef Gomis J, Galao O, Gomis V, Zornoza E, Garcés P (2015) Self-heating and deicing conductive cement. Experimental study and modeling. Constr Build Mater 75:442–449CrossRef
12.
Zurück zum Zitat Ghosh P, Tran Q (2015) Correlation between bulk and surface resistivity of concrete. Int. J. Concr. Struct. Mater. 9(1):119–132CrossRef Ghosh P, Tran Q (2015) Correlation between bulk and surface resistivity of concrete. Int. J. Concr. Struct. Mater. 9(1):119–132CrossRef
13.
Zurück zum Zitat Han B, Zhang K, Yu X, Kwon E, Ou J (2012) Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cement Concr Compos 34:794–800CrossRef Han B, Zhang K, Yu X, Kwon E, Ou J (2012) Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cement Concr Compos 34:794–800CrossRef
14.
Zurück zum Zitat Howser R, Dhonde H, Mo Y (2011) Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Mater Struct 20(8):085031 Howser R, Dhonde H, Mo Y (2011) Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Mater Struct 20(8):085031
15.
Zurück zum Zitat Han B, Yu X, Kwon E, Ou JP (2012) Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. J Comp Mater 46(1):19–25CrossRef Han B, Yu X, Kwon E, Ou JP (2012) Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. J Comp Mater 46(1):19–25CrossRef
16.
Zurück zum Zitat Han B, Zhang L, Sun S, Yu X, Dong X, Wu T, Ou J (2015) Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos Part A 79:103–115CrossRef Han B, Zhang L, Sun S, Yu X, Dong X, Wu T, Ou J (2015) Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos Part A 79:103–115CrossRef
17.
Zurück zum Zitat Hoheneder J, Vivian IF, Lin Z, Zilberman P, Sobolev K (2015) The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Compos Part B 73:89–95 Hoheneder J, Vivian IF, Lin Z, Zilberman P, Sobolev K (2015) The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Compos Part B 73:89–95
18.
Zurück zum Zitat Kim MK, Kim DJ, An Y-K (2018) Electro-mechanical self-sensing response of ultrahigh- performance fiber-reinforced concrete in tension. Compos B Eng 134:254–264CrossRef Kim MK, Kim DJ, An Y-K (2018) Electro-mechanical self-sensing response of ultrahigh- performance fiber-reinforced concrete in tension. Compos B Eng 134:254–264CrossRef
19.
Zurück zum Zitat McCarter WJ, Brousseau R (1990) The AC response of hardened cement paste. Cement Concr Res 20:891–900CrossRef McCarter WJ, Brousseau R (1990) The AC response of hardened cement paste. Cement Concr Res 20:891–900CrossRef
20.
Zurück zum Zitat Sassani A, Ceylan H, Kim S, Gopalakrishnan K, Arabzadeh A, Taylor PC (2017) Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Constr Build Mater 152:168–181CrossRef Sassani A, Ceylan H, Kim S, Gopalakrishnan K, Arabzadeh A, Taylor PC (2017) Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Constr Build Mater 152:168–181CrossRef
21.
Zurück zum Zitat Tian Z, Li Y, Zheng J, Wang S (2019) A state-of-the-art on self-sensing concrete: materials, fabrication and properties. Compos Part B Eng Tian Z, Li Y, Zheng J, Wang S (2019) A state-of-the-art on self-sensing concrete: materials, fabrication and properties. Compos Part B Eng
23.
Zurück zum Zitat Wu J, Liu J, Yang F (2015) Three-phase composite conductive concrete for pavement deicing. Constr Build Mater 75:129–135CrossRef Wu J, Liu J, Yang F (2015) Three-phase composite conductive concrete for pavement deicing. Constr Build Mater 75:129–135CrossRef
24.
Zurück zum Zitat Wen S, Chung D (2004) Electromagnetic interference shielding reaching 70 dB in steel fiber cement. Cem Concr Res 34(2):329–332CrossRef Wen S, Chung D (2004) Electromagnetic interference shielding reaching 70 dB in steel fiber cement. Cem Concr Res 34(2):329–332CrossRef
25.
Zurück zum Zitat Wen S, Chung DDL (2002) Cement-based materials for stress sensing by dielectric measurement. Cem Concr Res 32:1429–1433CrossRef Wen S, Chung DDL (2002) Cement-based materials for stress sensing by dielectric measurement. Cem Concr Res 32:1429–1433CrossRef
26.
Zurück zum Zitat Yehia S, Tuan CY, Ferdon D, Chen B (2000) Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. Mater J 97(2):172–181 Yehia S, Tuan CY, Ferdon D, Chen B (2000) Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. Mater J 97(2):172–181
27.
Zurück zum Zitat Yehia S, Qaddoumi N, Hassan M, Swaked B (2014) Conductive concrete for electromagnetic shielding applications. Adv Civil Eng Mater 3(1):270–290 Yehia S, Qaddoumi N, Hassan M, Swaked B (2014) Conductive concrete for electromagnetic shielding applications. Adv Civil Eng Mater 3(1):270–290
28.
Zurück zum Zitat Zhu Y, Zhang H, Zhang Z, Yao Y (2017) Electrochemical impedance spectroscopy (EIS) of hydration process and drying shrinkage for cement paste with W/C of 0.25 affected by high range water reducer. Constr Build Mater 131:536–541CrossRef Zhu Y, Zhang H, Zhang Z, Yao Y (2017) Electrochemical impedance spectroscopy (EIS) of hydration process and drying shrinkage for cement paste with W/C of 0.25 affected by high range water reducer. Constr Build Mater 131:536–541CrossRef
Metadaten
Titel
Electrical Properties of Conductive Concrete Containing Graphite
verfasst von
K. I. M. Iqbal
Paul Y. Choi
Nazmul Islam
Philip Park
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-1004-3_45