Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Electro-Fenton Process: Fundamentals and Reactivity

verfasst von : Ignasi Sirés, Enric Brillas

Erschienen in: Electro-Fenton Process

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is conceived as the gateway to more specific sections in the book. Its main aim is to introduce all the reactions of interest for fully understanding further development and applications of the EF process. The 50 reactions provided condense all the phenomena occurring in such a complex system and serve as the platform to justify the need of different devices and setups when treating water matrices of very different nature. In addition, all the key operation parameters for H2O2 electrogeneration and water decontamination are discussed. Subsections devoted to explaining the effect of the electrolyte composition, cell design, cathode and anode nature, catalyst source, hydrodynamic conditions, solution pH, and operation mode (potentiostatic or galvanostatic) are set out in summarized form, in order to present all the crucial information without intending to duplicate ideas that will be already given in subsequent chapters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6663CrossRef Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6663CrossRef
2.
Zurück zum Zitat Zakharov II, Kudjukov KY, Bondar VV, Tyupalo NF, Minaev BF (2011) DFT-based thermodynamics of Fenton reactions rejects the ‘pure’ aquacomplex models. Comput Theoret Chem 964:94–99CrossRef Zakharov II, Kudjukov KY, Bondar VV, Tyupalo NF, Minaev BF (2011) DFT-based thermodynamics of Fenton reactions rejects the ‘pure’ aquacomplex models. Comput Theoret Chem 964:94–99CrossRef
3.
Zurück zum Zitat Yamamoto N, Koga N, Nagaoka M (2012) Ferryl-oxo species produced from Fenton’s reagent via a two-step pathway: minimum free-energy path analysis. J Phys Chem B 116:14178–14182CrossRef Yamamoto N, Koga N, Nagaoka M (2012) Ferryl-oxo species produced from Fenton’s reagent via a two-step pathway: minimum free-energy path analysis. J Phys Chem B 116:14178–14182CrossRef
4.
Zurück zum Zitat Ayodele OB (2016) Structure and reactivity of ZSM-5 supported oxalate ligand functionalized nano-Fe catalyst for low temperature direct methane conversion to methanol. Energy Conv Manage 126:537–547CrossRef Ayodele OB (2016) Structure and reactivity of ZSM-5 supported oxalate ligand functionalized nano-Fe catalyst for low temperature direct methane conversion to methanol. Energy Conv Manage 126:537–547CrossRef
5.
Zurück zum Zitat Saporito-Magriñá C, Musacco-Sebio R, Acosta JM, Bajicoff S, Paredes-Fleitas P, Boveris A, Repetto MG (2017) Rat liver mitochondrial dysfunction by addition of copper(II) or iron(III) ions. J Inorg Biochem 166:5–1CrossRef Saporito-Magriñá C, Musacco-Sebio R, Acosta JM, Bajicoff S, Paredes-Fleitas P, Boveris A, Repetto MG (2017) Rat liver mitochondrial dysfunction by addition of copper(II) or iron(III) ions. J Inorg Biochem 166:5–1CrossRef
6.
Zurück zum Zitat Li WP, Su CH, Chang YC, Lin YJ, Yeh CS (2016) Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 10:2017–2027CrossRef Li WP, Su CH, Chang YC, Lin YJ, Yeh CS (2016) Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 10:2017–2027CrossRef
7.
Zurück zum Zitat Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad TS (2016) Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration. Nanoscale 8:17919–17927CrossRef Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad TS (2016) Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration. Nanoscale 8:17919–17927CrossRef
8.
Zurück zum Zitat Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84CrossRef Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84CrossRef
9.
Zurück zum Zitat Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:257–264CrossRef Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:257–264CrossRef
10.
Zurück zum Zitat Tomat R, Vecchi E (1971) Electrocatalytic production of OH radicals and their oxidative addition to benzene. J Appl Electrochem 1:185–188CrossRef Tomat R, Vecchi E (1971) Electrocatalytic production of OH radicals and their oxidative addition to benzene. J Appl Electrochem 1:185–188CrossRef
11.
Zurück zum Zitat Sudoh M, Kodera T, Sakai K, Zhang JQ, Koide K (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent. J Chem Eng Jpn 19:513–518CrossRef Sudoh M, Kodera T, Sakai K, Zhang JQ, Koide K (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent. J Chem Eng Jpn 19:513–518CrossRef
12.
Zurück zum Zitat Buxton GU, Greenstock CL, Helman WP, Ross AB (1988) critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. J Phys Chem Ref Data 17:513–886CrossRef Buxton GU, Greenstock CL, Helman WP, Ross AB (1988) critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886CrossRef
13.
Zurück zum Zitat Oturan MA, Oturan N, Aaron JJ (2004) Traitement des micropolluants organiques dans l'eau par des procédés d’oxydation avancée. Actual Chimique 277–278:57–63 Oturan MA, Oturan N, Aaron JJ (2004) Traitement des micropolluants organiques dans l'eau par des procédés d’oxydation avancée. Actual Chimique 277–278:57–63
14.
Zurück zum Zitat Burns J, Craig P, Shaw T, Ferry A (2010) Multivariate examination of Fe(II)/Fe(III) cycling and consequent hydroxyl radical generation. Env Sci Technol 44:7226–7723CrossRef Burns J, Craig P, Shaw T, Ferry A (2010) Multivariate examination of Fe(II)/Fe(III) cycling and consequent hydroxyl radical generation. Env Sci Technol 44:7226–7723CrossRef
15.
Zurück zum Zitat Bossmann SH, Oliveros E, Göb S, Siegwart S, Dahlen EP, Payawan J, Straub M, Wörner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102:5542–5550CrossRef Bossmann SH, Oliveros E, Göb S, Siegwart S, Dahlen EP, Payawan J, Straub M, Wörner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102:5542–5550CrossRef
16.
Zurück zum Zitat Kremer ML (1999) Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605CrossRef Kremer ML (1999) Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605CrossRef
17.
Zurück zum Zitat Pang SY, Jiang J, Ma J (2011) Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environ Sci Technol 45:307–312CrossRef Pang SY, Jiang J, Ma J (2011) Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environ Sci Technol 45:307–312CrossRef
18.
Zurück zum Zitat Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ Sci Technol 33:1832–1839CrossRef Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ Sci Technol 33:1832–1839CrossRef
19.
Zurück zum Zitat Pliego G, Zazo JA, Garcia-Muñoz P, Muñoz M, Casas JA, Rodríguez JJ (2015) Trends in the intensification of Fenton process by wastewater treatment: an overview. Crit Rev Environ Sci Technol 45:2611–2692CrossRef Pliego G, Zazo JA, Garcia-Muñoz P, Muñoz M, Casas JA, Rodríguez JJ (2015) Trends in the intensification of Fenton process by wastewater treatment: an overview. Crit Rev Environ Sci Technol 45:2611–2692CrossRef
20.
Zurück zum Zitat Reis RM, Beati AAGF, Rocha RS, Assumpção MHMT, Santos MC, Bertazzoli R, Lanza MRV (2012) Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor. Ind Eng Chem Res 51:649–654CrossRef Reis RM, Beati AAGF, Rocha RS, Assumpção MHMT, Santos MC, Bertazzoli R, Lanza MRV (2012) Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor. Ind Eng Chem Res 51:649–654CrossRef
21.
Zurück zum Zitat Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407CrossRef Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407CrossRef
22.
Zurück zum Zitat Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Amer Chem Soc 135:2013–2036CrossRef Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Amer Chem Soc 135:2013–2036CrossRef
23.
Zurück zum Zitat Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Amer Chem Soc 136:10053–11006CrossRef Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Amer Chem Soc 136:10053–11006CrossRef
24.
Zurück zum Zitat Da Pozzo A, Di Palma L, Merli C, Petrucci E (2005) An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J Appl Electrochem 35:413–419CrossRef Da Pozzo A, Di Palma L, Merli C, Petrucci E (2005) An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J Appl Electrochem 35:413–419CrossRef
25.
Zurück zum Zitat Alvarez-Gallegos A, Pletcher D (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in acidic aqueous solutions. Electrochim Acta 44:853–886CrossRef Alvarez-Gallegos A, Pletcher D (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in acidic aqueous solutions. Electrochim Acta 44:853–886CrossRef
26.
Zurück zum Zitat Badellino C, Rodrigues CA, Bertazzoli R (2007) Oxidation of herbicides by in situ synthesized hydrogen peroxide and Fenton’s reagent in an electrochemical flow reactor: study of the degradation of 2,4-dichlorophenoxyacetic acid. J Appl Electrochem 37:451–459CrossRef Badellino C, Rodrigues CA, Bertazzoli R (2007) Oxidation of herbicides by in situ synthesized hydrogen peroxide and Fenton’s reagent in an electrochemical flow reactor: study of the degradation of 2,4-dichlorophenoxyacetic acid. J Appl Electrochem 37:451–459CrossRef
27.
Zurück zum Zitat Yu X, Zhou M, Ren G, Ma L (2015) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100CrossRef Yu X, Zhou M, Ren G, Ma L (2015) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100CrossRef
28.
Zurück zum Zitat Barazesh JM, Hennebel T, Jasper JT, Sedlak DL (2015) Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Env Sci Tech 49:7391–7399CrossRef Barazesh JM, Hennebel T, Jasper JT, Sedlak DL (2015) Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Env Sci Tech 49:7391–7399CrossRef
29.
Zurück zum Zitat Brillas E, Bastida RM, Llosa E, Casado J (1995) Electrochemical destruction of aniline and 4-chloroaniline for waste water treatment using a carbon-PTFE O2-fed cathode. J Electrochem Soc 142:1733–1174CrossRef Brillas E, Bastida RM, Llosa E, Casado J (1995) Electrochemical destruction of aniline and 4-chloroaniline for waste water treatment using a carbon-PTFE O2-fed cathode. J Electrochem Soc 142:1733–1174CrossRef
30.
Zurück zum Zitat Oturan MA, Guivarch E, Oturan N, Sirés I (2008) Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl Catal B: Environ 82:244–254CrossRef Oturan MA, Guivarch E, Oturan N, Sirés I (2008) Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl Catal B: Environ 82:244–254CrossRef
31.
Zurück zum Zitat Flox C, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36CrossRef Flox C, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36CrossRef
32.
Zurück zum Zitat Coria G, Sirés I, Brillas E, Nava JL (2016) Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chem Eng J 304:817–825CrossRef Coria G, Sirés I, Brillas E, Nava JL (2016) Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chem Eng J 304:817–825CrossRef
33.
Zurück zum Zitat Badellino C, Rodrigues CA, Bertazzoli R (2006) Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: study for the degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 137:856–872CrossRef Badellino C, Rodrigues CA, Bertazzoli R (2006) Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: study for the degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 137:856–872CrossRef
34.
Zurück zum Zitat Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65:227–233CrossRef Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65:227–233CrossRef
35.
Zurück zum Zitat Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616:71–78CrossRef Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616:71–78CrossRef
36.
Zurück zum Zitat Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482CrossRef Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482CrossRef
37.
Zurück zum Zitat Qiang Z, Chang J-H, Huang C-P (2003) Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Res 37:1308–1319CrossRef Qiang Z, Chang J-H, Huang C-P (2003) Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Res 37:1308–1319CrossRef
38.
Zurück zum Zitat Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B: Environ. 72:382–394CrossRef Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B: Environ. 72:382–394CrossRef
39.
Zurück zum Zitat Ammar S, Oturan MA, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E (2015) Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res 74:77–87CrossRef Ammar S, Oturan MA, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E (2015) Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res 74:77–87CrossRef
40.
Zurück zum Zitat Iglesias O, Meijide J, Bocos E, Sanroman MA, Pazos M (2015) New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochim Acta 169:134–114CrossRef Iglesias O, Meijide J, Bocos E, Sanroman MA, Pazos M (2015) New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochim Acta 169:134–114CrossRef
41.
Zurück zum Zitat Özcan A, Atilir Özcan A, Demirci Y, Sener E (2017) Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B: Environ 200:361–337CrossRef Özcan A, Atilir Özcan A, Demirci Y, Sener E (2017) Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B: Environ 200:361–337CrossRef
42.
Zurück zum Zitat Liang L, Yu F, An Y, Liu M, Zhou M (2017) Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ Sci Pollut Res 24:1122–1132CrossRef Liang L, Yu F, An Y, Liu M, Zhou M (2017) Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ Sci Pollut Res 24:1122–1132CrossRef
43.
Zurück zum Zitat Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5:3655–3666CrossRef Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5:3655–3666CrossRef
44.
Zurück zum Zitat Thiam A, Brillas E, Garrido JA, Rodríguez RM, Sirés I (2016) Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl Catal B: Environ 180:227–236CrossRef Thiam A, Brillas E, Garrido JA, Rodríguez RM, Sirés I (2016) Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl Catal B: Environ 180:227–236CrossRef
45.
Zurück zum Zitat Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015) Effect of anions on electrochemical degradation of azo dye Carmoisine (Acid Red 14) using a BDD anode and air-diffusion cathode. Sep Purif Technol 140:43–52CrossRef Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015) Effect of anions on electrochemical degradation of azo dye Carmoisine (Acid Red 14) using a BDD anode and air-diffusion cathode. Sep Purif Technol 140:43–52CrossRef
46.
Zurück zum Zitat Steter JR, Brillas E, Sirés I (2016) On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media. Electrochim Acta 222:1464–1474CrossRef Steter JR, Brillas E, Sirés I (2016) On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media. Electrochim Acta 222:1464–1474CrossRef
47.
Zurück zum Zitat Kodera F, Umeda M, Yamada A (2005) Detection of hypochlorous acid using reduction wave during anodic cyclic voltammetry. Jpn J Appl Phys 44:L718–L719CrossRef Kodera F, Umeda M, Yamada A (2005) Detection of hypochlorous acid using reduction wave during anodic cyclic voltammetry. Jpn J Appl Phys 44:L718–L719CrossRef
48.
Zurück zum Zitat Thiam A, Brillas E, Centellas F, Cabot PL, Sirés I (2015) Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells. Electrochim Acta 173:523–533CrossRef Thiam A, Brillas E, Centellas F, Cabot PL, Sirés I (2015) Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells. Electrochim Acta 173:523–533CrossRef
49.
Zurück zum Zitat Aguilar ZA, Brillas E, Salazar M, Nava JL, Sirés I (2017) Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Appl Catal B: Environ 206:44–52CrossRef Aguilar ZA, Brillas E, Salazar M, Nava JL, Sirés I (2017) Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Appl Catal B: Environ 206:44–52CrossRef
50.
Zurück zum Zitat Thiam A, Zhou M, Brillas E, Sirés I (2014) Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl Catal B: Environ 150–151:116–125CrossRef Thiam A, Zhou M, Brillas E, Sirés I (2014) Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl Catal B: Environ 150–151:116–125CrossRef
Metadaten
Titel
Electro-Fenton Process: Fundamentals and Reactivity
verfasst von
Ignasi Sirés
Enric Brillas
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/698_2017_40