Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Electronic and Topological Properties of Silicene, Germanene and Stanene

verfasst von : Motohiko Ezawa

Erschienen in: Silicene

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we review the recent progress on electronic and topological properties of monolayer topological insulators including silicene, germanene and stanene.We start with the description of the topological nature of the general Dirac system and then apply it to silicene by introducing the spin and valley degrees of freedom. Based on them, we classify all topological insulators in the general honeycomb system. We discuss topological electronics based on honeycomb systems. We introduce the topological Kirchhoff law, which is a conservation law of topological edge states. Field effect topological transistor is proposed based on the topological edge states. We show that the conductance is quantized even in the presence of random distributed impurities. Monolayer topological insulators will be a key for future topological electronics and spin-valleytronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Ezawa, Antiferromagnetic topological superconductor and electrically controllable Majorana fermions. Phys. Rev. Lett. 114, 056403 (2015)ADSCrossRef M. Ezawa, Antiferromagnetic topological superconductor and electrically controllable Majorana fermions. Phys. Rev. Lett. 114, 056403 (2015)ADSCrossRef
2.
Zurück zum Zitat P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)ADSCrossRef P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)ADSCrossRef
4.
Zurück zum Zitat M. Ezawa, Topological insulator and helical zero mode in silicene under inhomogeneous electric field. New J. Phys. 14, 033003 (2012)ADSCrossRef M. Ezawa, Topological insulator and helical zero mode in silicene under inhomogeneous electric field. New J. Phys. 14, 033003 (2012)ADSCrossRef
5.
Zurück zum Zitat N.D. Drummond, V. Zolyomi, V.I. Fal’ko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)ADSCrossRef N.D. Drummond, V. Zolyomi, V.I. Fal’ko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)ADSCrossRef
6.
Zurück zum Zitat M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett 109, 055502 (2012)ADSCrossRef M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett 109, 055502 (2012)ADSCrossRef
7.
Zurück zum Zitat M. Ezawa, Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys. Rev. Lett. 110, 026603 (2013)ADSCrossRef M. Ezawa, Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys. Rev. Lett. 110, 026603 (2013)ADSCrossRef
8.
Zurück zum Zitat M. Ezawa, Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons. Appl. Phys. Lett. 102, 172103 (2013)ADSCrossRef M. Ezawa, Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons. Appl. Phys. Lett. 102, 172103 (2013)ADSCrossRef
9.
Zurück zum Zitat M. Ezawa, N. Nagaosa, Interference of topologically protected edge states in silicene nanoribbons. Phys. Rev. B 88, 161406 (R) (2013) M. Ezawa, N. Nagaosa, Interference of topologically protected edge states in silicene nanoribbons. Phys. Rev. B 88, 161406 (R) (2013)
10.
Zurück zum Zitat M. Ezawa, E. Salomon, P. De Padova, D. Solonenko, P. Vogt, M.E. Dvila, A. Molle, T. Angot, G. Le Lay, Fundamentals and functionalities of silicene, germanene, and stanene. La Rivista del Nuovo Cimento 41, 175 (2018) M. Ezawa, E. Salomon, P. De Padova, D. Solonenko, P. Vogt, M.E. Dvila, A. Molle, T. Angot, G. Le Lay, Fundamentals and functionalities of silicene, germanene, and stanene. La Rivista del Nuovo Cimento 41, 175 (2018)
11.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)
12.
Zurück zum Zitat M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)CrossRef M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)CrossRef
13.
Zurück zum Zitat H.B. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219 (1981)ADSCrossRef H.B. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219 (1981)ADSCrossRef
14.
Zurück zum Zitat C.-C. Liu, H. Jiang, Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)ADSCrossRef C.-C. Liu, H. Jiang, Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)ADSCrossRef
15.
Zurück zum Zitat C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)ADSCrossRef C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)ADSCrossRef
16.
Zurück zum Zitat C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005); Z\(_{2}\) topological order and the quantum spin Hall effect. Ibid 95, 146802 (2005) C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005); Z\(_{2}\) topological order and the quantum spin Hall effect. Ibid 95, 146802 (2005)
17.
Zurück zum Zitat Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013)ADSCrossRef Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013)ADSCrossRef
18.
Zurück zum Zitat M. Ezawa, Spin-valleytronics in silicene: quantum spin Hall-quantum anomalous Hall insulators and single-valley semimetals. Phys. Rev. B 87, 155415 (2013)ADSCrossRef M. Ezawa, Spin-valleytronics in silicene: quantum spin Hall-quantum anomalous Hall insulators and single-valley semimetals. Phys. Rev. B 87, 155415 (2013)ADSCrossRef
19.
Zurück zum Zitat X. Li, T. Cao, Q. Niu, J. Shi, J. Feng, Coupling the valley degree of freedom to antiferromagnetic order. PNAS 110, 3738 (2013)ADSCrossRef X. Li, T. Cao, Q. Niu, J. Shi, J. Feng, Coupling the valley degree of freedom to antiferromagnetic order. PNAS 110, 3738 (2013)ADSCrossRef
20.
Zurück zum Zitat Q.-F. Liang, L.-H. Wu, X. Hu, Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013)ADSCrossRef Q.-F. Liang, L.-H. Wu, X. Hu, Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013)ADSCrossRef
21.
Zurück zum Zitat D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)ADSCrossRef D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)ADSCrossRef
23.
Zurück zum Zitat S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995): Quantum Transport: Atom to Transistor (Cambridge University Press, England, 2005) S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995): Quantum Transport: Atom to Transistor (Cambridge University Press, England, 2005)
24.
Zurück zum Zitat F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, J.J. Palacios, Coherent transport in graphene nanoconstrictions. Phys. Rev. B 74, 195417 (2006)ADSCrossRef F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, J.J. Palacios, Coherent transport in graphene nanoconstrictions. Phys. Rev. B 74, 195417 (2006)ADSCrossRef
25.
Zurück zum Zitat L.P. Zârbo, B.K. Nikolić, Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons. EPL 80, 47001 (2007): D.A. Areshkin, B.K. Nikolić, I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices. Phys. Rev. B 79, 205430 (2009) L.P. Zârbo, B.K. Nikolić, Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons. EPL 80, 47001 (2007): D.A. Areshkin, B.K. Nikolić, I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices. Phys. Rev. B 79, 205430 (2009)
26.
Zurück zum Zitat T.C. Li, S.-P. Lu, Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77, 085408 (2008)ADSCrossRef T.C. Li, S.-P. Lu, Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77, 085408 (2008)ADSCrossRef
27.
Zurück zum Zitat M.P.L. Sancho, J.M.L. Sancho, J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15, 851 (1985)ADSCrossRef M.P.L. Sancho, J.M.L. Sancho, J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15, 851 (1985)ADSCrossRef
28.
Zurück zum Zitat M. Ezawa, Electrically tunable conductance and edge modes in topological crystalline insulator thin films: tight-binding model analysis. New J. Phys. 16, 115004 (2014)ADSCrossRef M. Ezawa, Electrically tunable conductance and edge modes in topological crystalline insulator thin films: tight-binding model analysis. New J. Phys. 16, 115004 (2014)ADSCrossRef
29.
Zurück zum Zitat S. Ryu, Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)ADSCrossRef S. Ryu, Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)ADSCrossRef
30.
Zurück zum Zitat M. Kohmoto, Y. Hasegawa, Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007)ADSCrossRef M. Kohmoto, Y. Hasegawa, Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007)ADSCrossRef
Metadaten
Titel
Electronic and Topological Properties of Silicene, Germanene and Stanene
verfasst von
Motohiko Ezawa
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-99964-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.