Skip to main content
Erschienen in: Tribology Letters 2/2014

01.02.2014 | Original Paper

Elimination of Stick-Slip Motion in Sliding of Split or Rough Surface

verfasst von: Y. Kligerman, M. Varenberg

Erschienen in: Tribology Letters | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we present a mass-less quasi-static model of stick-slip phenomenon built exclusively on the difference between higher static and lower kinetic friction force. The model allows explaining the disappearance of stick-slip motion when elastic surface slid in contact with rigid counter-face bears large amount of small outgrowths. Adjusting the model parameters, it is also possible simulating systems with different transient responses. The results obtained may also be helpful in understanding the variety of sliding behavior of different materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)CrossRef Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)CrossRef
2.
Zurück zum Zitat Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRef Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRef
3.
Zurück zum Zitat Moore, D.F.: Principles and Applications of Tribology. Pergamon, Oxford (1975) Moore, D.F.: Principles and Applications of Tribology. Pergamon, Oxford (1975)
4.
Zurück zum Zitat Dowson, D.: History of tribology, 3rd edn. Wiley, Chicester (2013) Dowson, D.: History of tribology, 3rd edn. Wiley, Chicester (2013)
5.
Zurück zum Zitat Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958)CrossRef Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958)CrossRef
6.
Zurück zum Zitat Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRef Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRef
7.
Zurück zum Zitat Xia, K.W., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)CrossRef Xia, K.W., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)CrossRef
8.
Zurück zum Zitat Rubinstein, S.M., Cohen, G., Fineberg, J.: The dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)CrossRef Rubinstein, S.M., Cohen, G., Fineberg, J.: The dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)CrossRef
9.
Zurück zum Zitat Yang, Z.P., Zhang, H.P., Marder, M.: Dynamics of static friction between steel and silicon. Proc. Natl. Acad. Sci. U.S.A. 105, 13264–13268 (2008)CrossRef Yang, Z.P., Zhang, H.P., Marder, M.: Dynamics of static friction between steel and silicon. Proc. Natl. Acad. Sci. U.S.A. 105, 13264–13268 (2008)CrossRef
10.
Zurück zum Zitat Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick: the evolution of frictional strength. Nature 463, 76–79 (2010)CrossRef Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick: the evolution of frictional strength. Nature 463, 76–79 (2010)CrossRef
11.
Zurück zum Zitat Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)CrossRef Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)CrossRef
12.
Zurück zum Zitat Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef
13.
Zurück zum Zitat Capozza, R., Rubinstein, S.M., Barel, I., Urbakh, M., Fineberg, J.: Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)CrossRef Capozza, R., Rubinstein, S.M., Barel, I., Urbakh, M., Fineberg, J.: Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)CrossRef
14.
Zurück zum Zitat Bennewitz, R., David, J., de Lannoy, C.-F., Drevniok, B., Hubbard-Davis, P., Miura, T., Trichtchenko, O.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Mat. 20, 015004 (2008)CrossRef Bennewitz, R., David, J., de Lannoy, C.-F., Drevniok, B., Hubbard-Davis, P., Miura, T., Trichtchenko, O.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Mat. 20, 015004 (2008)CrossRef
15.
Zurück zum Zitat Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill, New York (1988) Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill, New York (1988)
16.
Zurück zum Zitat Beutel, R.G., Gorb, S.N.: Ultrastructure of attachment specializations of Hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39, 177–207 (2001)CrossRef Beutel, R.G., Gorb, S.N.: Ultrastructure of attachment specializations of Hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39, 177–207 (2001)CrossRef
17.
Zurück zum Zitat Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRef Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRef
18.
Zurück zum Zitat Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)CrossRef Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)CrossRef
19.
Zurück zum Zitat Peattie, A.M., Full, R.J.: Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. U.S.A. 104, 18595–18600 (2007)CrossRef Peattie, A.M., Full, R.J.: Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. U.S.A. 104, 18595–18600 (2007)CrossRef
20.
Zurück zum Zitat Varenberg, M., Murarash, B., Kligerman, Y., Gorb, S.N.: Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl. Phys. A 103, 933–938 (2011)CrossRef Varenberg, M., Murarash, B., Kligerman, Y., Gorb, S.N.: Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl. Phys. A 103, 933–938 (2011)CrossRef
21.
22.
Zurück zum Zitat Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)CrossRef Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)CrossRef
23.
Zurück zum Zitat Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)CrossRef Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)CrossRef
24.
Zurück zum Zitat Rand, C.J., Crosby, A.J.: Friction of soft elastomeric wrinkled surfaces. Appl. Phys. Lett. 106, 064913 (2009) Rand, C.J., Crosby, A.J.: Friction of soft elastomeric wrinkled surfaces. Appl. Phys. Lett. 106, 064913 (2009)
25.
Zurück zum Zitat Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553–5557 (2011)CrossRef Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553–5557 (2011)CrossRef
26.
Zurück zum Zitat Brormann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013)CrossRef Brormann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013)CrossRef
27.
Zurück zum Zitat Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Mat. 24, 225008 (2012)CrossRef Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Mat. 24, 225008 (2012)CrossRef
28.
Zurück zum Zitat Zakharov, V.S.: Models of seismotectonic systems with dry friction. Mosc. Univ. Geol. Bull. 66, 13–20 (2011)CrossRef Zakharov, V.S.: Models of seismotectonic systems with dry friction. Mosc. Univ. Geol. Bull. 66, 13–20 (2011)CrossRef
29.
Zurück zum Zitat Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967) Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)
30.
Zurück zum Zitat Carlson, J.M., Langer, J.M.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 62, 2632–2635 (1989)CrossRef Carlson, J.M., Langer, J.M.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 62, 2632–2635 (1989)CrossRef
31.
Zurück zum Zitat Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992)CrossRef Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992)CrossRef
32.
Zurück zum Zitat Persson, B.N.J.: Theory of friction: stress domains, relaxation, and creep. Phys. Rev. B. 51, 13568–13585 (1995)CrossRef Persson, B.N.J.: Theory of friction: stress domains, relaxation, and creep. Phys. Rev. B. 51, 13568–13585 (1995)CrossRef
33.
Zurück zum Zitat Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)CrossRef Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)CrossRef
34.
Zurück zum Zitat Tromborg, J., Scheibert, J., Amundsen, D.S., Thogersen, K., Malthe-Sorenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)CrossRef Tromborg, J., Scheibert, J., Amundsen, D.S., Thogersen, K., Malthe-Sorenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)CrossRef
35.
Zurück zum Zitat Akishin, P.G., Altaisky, M.V., Antoniou, I., Budnik, A.D., Ivanov, V.V.: Burridge-Knopoff model and self-similarity. Chaos Soliton. Fract. 11, 207–222 (2000)CrossRef Akishin, P.G., Altaisky, M.V., Antoniou, I., Budnik, A.D., Ivanov, V.V.: Burridge-Knopoff model and self-similarity. Chaos Soliton. Fract. 11, 207–222 (2000)CrossRef
36.
Zurück zum Zitat Bhushan, B.: Introduction to tribology, p. 208. Wiley, New York (2002) Bhushan, B.: Introduction to tribology, p. 208. Wiley, New York (2002)
37.
Zurück zum Zitat Dyson, J., Hirst, W.: The true contact area between solids. P. Phys. Soc. B 67, 309–312 (1954)CrossRef Dyson, J., Hirst, W.: The true contact area between solids. P. Phys. Soc. B 67, 309–312 (1954)CrossRef
38.
Zurück zum Zitat Persson, B.N.J.: On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998)CrossRef Persson, B.N.J.: On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998)CrossRef
Metadaten
Titel
Elimination of Stick-Slip Motion in Sliding of Split or Rough Surface
verfasst von
Y. Kligerman
M. Varenberg
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 2/2014
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-013-0278-8

Weitere Artikel der Ausgabe 2/2014

Tribology Letters 2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.