Skip to main content

2018 | OriginalPaper | Buchkapitel

20. Embodied Carbon Measurement, Mitigation and Management Within Europe, Drawing on a Cross-Case Analysis of 60 Building Case Studies

verfasst von : A. M. Moncaster, H. Birgisdottir, T. Malmqvist, F. Nygaard Rasmussen, A. Houlihan Wiberg, E. Soulti

Erschienen in: Embodied Carbon in Buildings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a comprehensive overview of the state of the art on this subject within Europe. In order to do so, it draws on a cross-case analysis of over 60 European case studies, developed and analysed by the authors as part of the International Energy Agency Annex 57 project.
Embodied impacts have been considered for many years in this part of the world and have now reached a certain level of maturity; recently the publication of European standards EN 15978 and EN 15804 has helped to develop a more harmonised approach, while environmental certification schemes such as BREEAM from the UK and DGNB from Germany are increasingly encouraging European designers to use LCA to measure and reduce the whole-life carbon and energy of buildings. However, there are still a wide range of methodological approaches in use both in academic studies and in industry tools, hampering efforts to draw conclusive recommendations for low-carbon design strategies.
Two issues are of particular importance for the European context. First, as in other areas of the world, there is a focus on minimising the whole-life energy and carbon cost of new buildings. This paper uses the analysis of the Annex 57 case studies to provide a general quantification of embodied carbon and energy in European buildings for different life cycle stages and building components. It then identifies a number of approaches to reducing these impacts and, by comparing with a review of the international literature, discusses which of these identified mitigation strategies are particularly suitable in Europe.
The second issue recognises the unique aspects of this historically urbanised region of the world. Here the high proportion of old and very old buildings means that refurbishment and adaptation projects account for a significant proportion of construction sector impacts. Meanwhile, rising populations are leading to increased pressures for the densification of already-developed brownfield sites. While refurbishment, in preference to demolition and rebuild, has been identified in the academic literature as frequently a lower-carbon strategy, this is seldom an issue taken into account in industry practice. This chapter concludes that this area is one of particular importance on which industry and academia should work together across Europe.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aktas, C. B., & Bilec, M. M. (2012). Impact of lifetime on U.S. residential building LCA results. The International Journal of Life Cycle Assessment, 17, 337–349.CrossRef Aktas, C. B., & Bilec, M. M. (2012). Impact of lifetime on U.S. residential building LCA results. The International Journal of Life Cycle Assessment, 17, 337–349.CrossRef
Zurück zum Zitat Anand, C. K., & Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and Sustainable Energy Reviews, 67, 408–416.CrossRef Anand, C. K., & Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and Sustainable Energy Reviews, 67, 408–416.CrossRef
Zurück zum Zitat Andresen, I. (2017). Towards zero energy and zero emission buildings – Definitions, concepts and strategies. Current Sustainable/Renewable Energy Reports, 4, 63–71.CrossRef Andresen, I. (2017). Towards zero energy and zero emission buildings – Definitions, concepts and strategies. Current Sustainable/Renewable Energy Reports, 4, 63–71.CrossRef
Zurück zum Zitat Baker, H. E., & Moncaster, A. M. (2018). Embodied carbon and the decision to demolish or adapt. ZEMCH (Zero Energy Mass Custom Home) International Conference. Melbourne, Australia. Baker, H. E., & Moncaster, A. M. (2018). Embodied carbon and the decision to demolish or adapt. ZEMCH (Zero Energy Mass Custom Home) International Conference. Melbourne, Australia.
Zurück zum Zitat Baker, H. E., Moncaster, A. M., & Al Tabbaa, A. (2017). The decision to demolish or adapt existing buildings on brownfield sites. Proceedings of the Institution of Civil Engineers – Forensic Engineering, special issue: Forensic engineering in urban renovation, 170, Published online ahead of print 8th March 2017. Baker, H. E., Moncaster, A. M., & Al Tabbaa, A. (2017). The decision to demolish or adapt existing buildings on brownfield sites. Proceedings of the Institution of Civil Engineers – Forensic Engineering, special issue: Forensic engineering in urban renovation, 170, Published online ahead of print 8th March 2017.
Zurück zum Zitat Ballarini, I., Corgnati, S. P., & Corrado, V. (2014). Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy, 68, 273–284.CrossRef Ballarini, I., Corgnati, S. P., & Corrado, V. (2014). Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy, 68, 273–284.CrossRef
Zurück zum Zitat Birgisdottir, H., Houlihan Wiberg, A., Malmqvist, T., Moncaster, A., & Nygaard Rasmussen, F. (2016a). IEA EBC Annex 57 ST4 Case study collection report ISBN: 978-4-909107-09-1. Birgisdottir, H., Houlihan Wiberg, A., Malmqvist, T., Moncaster, A., & Nygaard Rasmussen, F. (2016a). IEA EBC Annex 57 ST4 Case study collection report ISBN: 978-4-909107-09-1.
Zurück zum Zitat Birgisdottir, H., Houlihan Wiberg, A., Malmqvist, T., Moncaster, A., & Nygaard Rasmussen, F. (2016b). Recommendations for reduction of embodied carbon from buildings. Report of Subtask 4 of IEA Annex 57: Evaluation of Embodied Energy & Embodied GHG Emissions for Building Construction. ISBN: 978-4-909107-08-4. Birgisdottir, H., Houlihan Wiberg, A., Malmqvist, T., Moncaster, A., & Nygaard Rasmussen, F. (2016b). Recommendations for reduction of embodied carbon from buildings. Report of Subtask 4 of IEA Annex 57: Evaluation of Embodied Energy & Embodied GHG Emissions for Building Construction. ISBN: 978-4-909107-08-4.
Zurück zum Zitat Birgisdottir, H., Moncaster, A., Wiberg, A. H., Chae, C., Yokoyama, K., Balouktsi, M., Seo, S., Oka, T., Lützkendorf, T., & Malmqvist, T. (2017). IEA EBC annex 57 ‘evaluation of embodied energy and CO2eq for building construction’. Energy and Buildings, 154, 72–80.CrossRef Birgisdottir, H., Moncaster, A., Wiberg, A. H., Chae, C., Yokoyama, K., Balouktsi, M., Seo, S., Oka, T., Lützkendorf, T., & Malmqvist, T. (2017). IEA EBC annex 57 ‘evaluation of embodied energy and CO2eq for building construction’. Energy and Buildings, 154, 72–80.CrossRef
Zurück zum Zitat Bordass, B., Leaman, A., & Ruyssevelt, P. (2001). Assessing building performance in use 5: Conclusions and implications. Building Research and Information, 29, 144–157.CrossRef Bordass, B., Leaman, A., & Ruyssevelt, P. (2001). Assessing building performance in use 5: Conclusions and implications. Building Research and Information, 29, 144–157.CrossRef
Zurück zum Zitat Chang, Y., Ries, R. J., & Lei, S. (2012). The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy and Buildings, 55, 790–798.CrossRef Chang, Y., Ries, R. J., & Lei, S. (2012). The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy and Buildings, 55, 790–798.CrossRef
Zurück zum Zitat Darby, H. (2013). A case study to investigate the life cycle carbon emissions and carbon storage capacity of a cross-laminated timber multi-storey residential building. SB13, 24–26 2013 Munich, Germany. Darby, H. (2013). A case study to investigate the life cycle carbon emissions and carbon storage capacity of a cross-laminated timber multi-storey residential building. SB13, 24–26 2013 Munich, Germany.
Zurück zum Zitat Department for Communities and Local Government. (2017). English Housing Survey, 2016: Housing Stock Data. [data collection] (4th ed.). UK Data Service. Department for Communities and Local Government. (2017). English Housing Survey, 2016: Housing Stock Data. [data collection] (4th ed.). UK Data Service.
Zurück zum Zitat De Wolf, C., Pomponi, F., & Moncaster, A. M., (2017). Current industry practice in embodied carbon calculation. Energy and Buildings, 140, 68–80.CrossRef De Wolf, C., Pomponi, F., & Moncaster, A. M., (2017). Current industry practice in embodied carbon calculation. Energy and Buildings, 140, 68–80.CrossRef
Zurück zum Zitat Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42, 1238–1247.CrossRef Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42, 1238–1247.CrossRef
Zurück zum Zitat Dixit, M., Fernández-Solís, J., Lavy, S., & Culp, C. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16, 3730–3743.CrossRef Dixit, M., Fernández-Solís, J., Lavy, S., & Culp, C. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16, 3730–3743.CrossRef
Zurück zum Zitat European Commission. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. European Commission. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings.
Zurück zum Zitat European Committee for Standardization. (2011). EN 15978 Sustainability of construction works—Assessment of environmental performance of buildings—Calculation method. Brussels: European Committee for Standardization. European Committee for Standardization. (2011). EN 15978 Sustainability of construction works—Assessment of environmental performance of buildings—Calculation method. Brussels: European Committee for Standardization.
Zurück zum Zitat European Committee for Standardization. (2012). EN 15804 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products. Brussels: European Committee for Standardization. European Committee for Standardization. (2012). EN 15804 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products. Brussels: European Committee for Standardization.
Zurück zum Zitat Frischknecht, R., Wyss, F., Knöpfel, S. B. S., & Stolz, P. (2015). Life cycle assessment in the building sector: Analytical tools, environmental information and labels, 57th LCA forum, Swiss Federal Institute of Technology, Zurich, December 2, 2014. International Journal of Life Cycle Assessment, 20, 421–425. Frischknecht, R., Wyss, F., Knöpfel, S. B. S., & Stolz, P. (2015). Life cycle assessment in the building sector: Analytical tools, environmental information and labels, 57th LCA forum, Swiss Federal Institute of Technology, Zurich, December 2, 2014. International Journal of Life Cycle Assessment, 20, 421–425.
Zurück zum Zitat Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. Engineering Sustainability: Proceedings of the Institution of Civil Engineers, 161, 87–98. Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. Engineering Sustainability: Proceedings of the Institution of Civil Engineers, 161, 87–98.
Zurück zum Zitat Harris, R. (1993). Discovering timber-framed buildings. Princes Risborough: Shire Publications. Harris, R. (1993). Discovering timber-framed buildings. Princes Risborough: Shire Publications.
Zurück zum Zitat Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2013). Operational vs. embodied emissions in buildings—A review of current trends. Energy and Buildings, 66, 232–245.CrossRef Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2013). Operational vs. embodied emissions in buildings—A review of current trends. Energy and Buildings, 66, 232–245.CrossRef
Zurück zum Zitat Lowe, R. (2007). Addressing the challenges of climate change for the built environment. Building Research and Information, 35, 343–350.CrossRef Lowe, R. (2007). Addressing the challenges of climate change for the built environment. Building Research and Information, 35, 343–350.CrossRef
Zurück zum Zitat Lützkendorf, T., Balouktsi, M., & Frischknecht, R. (2016). International energy agency: Evaluation of embodied energy and CO2eq for building construction (Annex 57) Subtask 1: Basics, Actors and Concepts. Lützkendorf, T., Balouktsi, M., & Frischknecht, R. (2016). International energy agency: Evaluation of embodied energy and CO2eq for building construction (Annex 57) Subtask 1: Basics, Actors and Concepts.
Zurück zum Zitat Malmqvist, T., Birgisdottir, H., Houlihan Wiberg, A., Moncaster, A., Brown, N., John, V., Passer, A., Potting, A., & Soulti, E. (2014). Design strategies for low embodied energy and carbon in buildings: Analyses of the IEA Annex 57 case studies. World Sustainable Building Conference WSB14. Barcelona. Malmqvist, T., Birgisdottir, H., Houlihan Wiberg, A., Moncaster, A., Brown, N., John, V., Passer, A., Potting, A., & Soulti, E. (2014). Design strategies for low embodied energy and carbon in buildings: Analyses of the IEA Annex 57 case studies. World Sustainable Building Conference WSB14. Barcelona.
Zurück zum Zitat Malmqvist, T., Nehasilova, M., Moncaster, A., Birgisdottir, H., Rasmussen, F. N., Wiberg, A. H., & Potting, J. (2018). Design and construction strategies for reducing embodied impacts from buildings – Case study analysis. Energy and Buildings. Accepted 14 January 2018. Malmqvist, T., Nehasilova, M., Moncaster, A., Birgisdottir, H., Rasmussen, F. N., Wiberg, A. H., & Potting, J. (2018). Design and construction strategies for reducing embodied impacts from buildings – Case study analysis. Energy and Buildings. Accepted 14 January 2018.
Zurück zum Zitat Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270–282.CrossRef Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270–282.CrossRef
Zurück zum Zitat Moncaster, A. M., & Song, J.-Y. (2012). A comparative review of existing data and methodologies for calculating embodied energy and carbon of buildings. International Journal of Sustainable Building Technology and Urban Development, 3, 26.CrossRef Moncaster, A. M., & Song, J.-Y. (2012). A comparative review of existing data and methodologies for calculating embodied energy and carbon of buildings. International Journal of Sustainable Building Technology and Urban Development, 3, 26.CrossRef
Zurück zum Zitat Moncaster, A. M., & Symons, K. E. (2013). A method and tool for ‘cradle to grave’ embodied energy and carbon impacts of UK buildings in compliance with the new TC350 standards. Energy and Buildings, 66, 514–523.CrossRef Moncaster, A. M., & Symons, K. E. (2013). A method and tool for ‘cradle to grave’ embodied energy and carbon impacts of UK buildings in compliance with the new TC350 standards. Energy and Buildings, 66, 514–523.CrossRef
Zurück zum Zitat Optis, M., & Wild, P. (2010). Inadequate documentation in published life cycle energy reports on buildings. International Journal of Life Cycle Assessment, 15, 644–651.CrossRef Optis, M., & Wild, P. (2010). Inadequate documentation in published life cycle energy reports on buildings. International Journal of Life Cycle Assessment, 15, 644–651.CrossRef
Zurück zum Zitat Pomponi, F., & Moncaster, A. M. (2016). Embodied carbon mitigation and reduction in the built environment: The evidence. Journal of Environmental Management, 181, 687–700.CrossRef Pomponi, F., & Moncaster, A. M. (2016). Embodied carbon mitigation and reduction in the built environment: The evidence. Journal of Environmental Management, 181, 687–700.CrossRef
Zurück zum Zitat Pomponi, F., & Moncaster, A. M. (2018). Scrutinising embodied carbon in buildings: The next (emission) gap made manifest. Renewable and Sustainable Energy Reviews, Part 2, 81, 2431–2442. Pomponi, F., & Moncaster, A. M. (2018). Scrutinising embodied carbon in buildings: The next (emission) gap made manifest. Renewable and Sustainable Energy Reviews, Part 2, 81, 2431–2442.
Zurück zum Zitat RICS. (2017). Whole life carbon assessment for the built environment (1st ed.). London, UK: RICS. RICS. (2017). Whole life carbon assessment for the built environment (1st ed.). London, UK: RICS.
Zurück zum Zitat Sartori, I., Napolitano, A., & Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232.CrossRef Sartori, I., Napolitano, A., & Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232.CrossRef
Zurück zum Zitat Seo, S., Hajek, P., Birgisdottir, H., Nygaard Rasmussen, F., Passer, A., Chae, C.-U., Malmqvist, T., Houlihan Wiberg, H., Mistretta, M., Luetzkendorf, T., Balouktsi, M., Moncaster, A., Yokoyama, K., Yokoo, N., & Oka, T. (2016). Evaluation of embodied energy and CO2eq for building construction. Summary Report of Annex 57 to the International Energy Agency EBC Programme, ISBN: 978-4-909107-11-4. Seo, S., Hajek, P., Birgisdottir, H., Nygaard Rasmussen, F., Passer, A., Chae, C.-U., Malmqvist, T., Houlihan Wiberg, H., Mistretta, M., Luetzkendorf, T., Balouktsi, M., Moncaster, A., Yokoyama, K., Yokoo, N., & Oka, T. (2016). Evaluation of embodied energy and CO2eq for building construction. Summary Report of Annex 57 to the International Energy Agency EBC Programme, ISBN: 978-4-909107-11-4.
Zurück zum Zitat Summerfield, A. J., Oreszczyn, T., Palmer, J., Hamilton, I. G., & Lowe, R. J. (2015). Comparison of empirical and modelled energy performance across age-bands of three-bedroom dwellings in the UK. Energy and Buildings, 109, 328–333.CrossRef Summerfield, A. J., Oreszczyn, T., Palmer, J., Hamilton, I. G., & Lowe, R. J. (2015). Comparison of empirical and modelled energy performance across age-bands of three-bedroom dwellings in the UK. Energy and Buildings, 109, 328–333.CrossRef
Zurück zum Zitat Sunikka-Blank, M., & Galvin, R. (2012). Introducing the prebound effect: The gap between performance and actual energy consumption. Building Research and Information, 40, 260–273.CrossRef Sunikka-Blank, M., & Galvin, R. (2012). Introducing the prebound effect: The gap between performance and actual energy consumption. Building Research and Information, 40, 260–273.CrossRef
Zurück zum Zitat Thormark, C. (2002). A low energy building in a life cycle—Its embodied energy, energy need for operation and recycling potential. Building and Environment, 37(37), 429–435.CrossRef Thormark, C. (2002). A low energy building in a life cycle—Its embodied energy, energy need for operation and recycling potential. Building and Environment, 37(37), 429–435.CrossRef
Zurück zum Zitat Treloar, G. J. (1998). A comprehensive embodied energy analysis framework. Melbourne: Deakin University. Treloar, G. J. (1998). A comprehensive embodied energy analysis framework. Melbourne: Deakin University.
Zurück zum Zitat Uihlein, A., & Eder, P. (2010). Policy options towards an energy efficient residential building stock in the EU-27. Energy and Buildings, 42, 791–798.CrossRef Uihlein, A., & Eder, P. (2010). Policy options towards an energy efficient residential building stock in the EU-27. Energy and Buildings, 42, 791–798.CrossRef
Zurück zum Zitat Yand, W., & Kohler, N. (2008). Simulation of the evolution of the Chinese building and infrastructure stock. Building Research and Information, 36, 1–19.CrossRef Yand, W., & Kohler, N. (2008). Simulation of the evolution of the Chinese building and infrastructure stock. Building Research and Information, 36, 1–19.CrossRef
Zurück zum Zitat Yokoo, N., Oka, T., Yokoyama, K., Sawachi, T., & Yamamoto, M. (2015). Comparison of embodied energy/CO2 of office buildings in China and Japan. Journal of Civil Engineering and Architecture, 9, 300–307. Yokoo, N., Oka, T., Yokoyama, K., Sawachi, T., & Yamamoto, M. (2015). Comparison of embodied energy/CO2 of office buildings in China and Japan. Journal of Civil Engineering and Architecture, 9, 300–307.
Zurück zum Zitat Zöld-Zs, A., & Szalay, Z. (2005). What is missing from the concept of the new European building directive? Building and Environment, 42, 1761–1769. Zöld-Zs, A., & Szalay, Z. (2005). What is missing from the concept of the new European building directive? Building and Environment, 42, 1761–1769.
Metadaten
Titel
Embodied Carbon Measurement, Mitigation and Management Within Europe, Drawing on a Cross-Case Analysis of 60 Building Case Studies
verfasst von
A. M. Moncaster
H. Birgisdottir
T. Malmqvist
F. Nygaard Rasmussen
A. Houlihan Wiberg
E. Soulti
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72796-7_20