Skip to main content

2020 | OriginalPaper | Buchkapitel

Embodied Carbon Reduction Strategies for Buildings

verfasst von : L. M. T. Kumari, U. Kulatunga, N. Madusanka, N. Jayasena

Erschienen in: ICSBE 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Global warming has become a major environmental issue faced by the international community. Greenhouse gases (GHG) have been suspected to be the source of global warming and carbon emission has identified as the main contributor for global warming. CO2 could be released due to activities carried out by human such as burning fossil fuels, electricity consumption and transportation. Hence, the carbon footprint is the total amount of greenhouse gases produced directly or indirectly as a result of an activity. Up to 40% of all energy have been consumed by the building sector and it has contributed up to 30% of global annual GHG emissions. Therefore operational and embodied carbon were identified as two main general groups of carbon emissions related to buildings. Numerous researchers have paid their attention on operational carbon reduction and there are limited study on embodied carbon reduction. Therefore the researcher aims to identify embodied carbon reduction strategies for buildings. After a comprehensive literature review, selection of low carbon materials at the design stage of the building, reuse and recycling of carbon intensive materials, material minimization, optimum building design, local sourcing of materials, transportation minimization, efficient construction processes, policies and regulations by government, adaptive reuse of buildings and carbon labelling schemes were identified as the global embodied carbon reduction strategies for buildings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akbarnezhad A, Xiao J (2017) Estimation and minimization of embodied carbon of buildings: a review. Buildings 7(4):5CrossRef Akbarnezhad A, Xiao J (2017) Estimation and minimization of embodied carbon of buildings: a review. Buildings 7(4):5CrossRef
Zurück zum Zitat Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: review and results harmonization. Renew Sustain Energy Rev 42:1113–1122CrossRef Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: review and results harmonization. Renew Sustain Energy Rev 42:1113–1122CrossRef
Zurück zum Zitat Avetisyan HG, Miller-Hooks E, Melanta S (2012) Decision models to support greenhouse gas emissions reduction from transportation construction projects. J Constr Eng Manag 138(5):631–641CrossRef Avetisyan HG, Miller-Hooks E, Melanta S (2012) Decision models to support greenhouse gas emissions reduction from transportation construction projects. J Constr Eng Manag 138(5):631–641CrossRef
Zurück zum Zitat Basbagill J, Flager F, Lepech M, Fischer M (2013) Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build Environ 60:81–92CrossRef Basbagill J, Flager F, Lepech M, Fischer M (2013) Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build Environ 60:81–92CrossRef
Zurück zum Zitat Bradley PE, Kohler N (2007) Methodology for the survival analysis of urban building stocks. Build Res Inf 35(5):529–542CrossRef Bradley PE, Kohler N (2007) Methodology for the survival analysis of urban building stocks. Build Res Inf 35(5):529–542CrossRef
Zurück zum Zitat Bribian IZ, Capilla AV, Uson AA (2011) Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46(5):1133–1140CrossRef Bribian IZ, Capilla AV, Uson AA (2011) Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46(5):1133–1140CrossRef
Zurück zum Zitat Bullen PA (2007) Adaptive reuse and sustainability of commercial buildings. Facilities 25(1/2):20–31CrossRef Bullen PA (2007) Adaptive reuse and sustainability of commercial buildings. Facilities 25(1/2):20–31CrossRef
Zurück zum Zitat Bueren EV, Jong JD (2007) Establishing sustainability: policy successes and failures. Build Res Inf 35(5):543–556CrossRef Bueren EV, Jong JD (2007) Establishing sustainability: policy successes and failures. Build Res Inf 35(5):543–556CrossRef
Zurück zum Zitat Carmichael DG, Williams EH, Kaboli AS (2012) Minimum operational emissions in earthmoving. In: Construction research congress Carmichael DG, Williams EH, Kaboli AS (2012) Minimum operational emissions in earthmoving. In: Construction research congress
Zurück zum Zitat Chau C, Hui W, Ng W, Powell G (2012) Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resour Conserv Recycl 61:22–34CrossRef Chau C, Hui W, Ng W, Powell G (2012) Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resour Conserv Recycl 61:22–34CrossRef
Zurück zum Zitat Chen T, Burnett J, Chau C (2001) Analysis of embodied energy use in the residential building of Hong Kong. Energy 26(4):323–340CrossRef Chen T, Burnett J, Chau C (2001) Analysis of embodied energy use in the residential building of Hong Kong. Energy 26(4):323–340CrossRef
Zurück zum Zitat Chen Y, Ng ST (2015) Integrate an embodied GHG emissions assessment model into building environmental assessment tools. Proc Eng 118:318–325CrossRef Chen Y, Ng ST (2015) Integrate an embodied GHG emissions assessment model into building environmental assessment tools. Proc Eng 118:318–325CrossRef
Zurück zum Zitat Chou J-S, Yeh K-C (2015) Life cycle carbon dioxide emissions simulation and environmental cost analysis for building construction. J Clean Prod 101:137–147CrossRef Chou J-S, Yeh K-C (2015) Life cycle carbon dioxide emissions simulation and environmental cost analysis for building construction. J Clean Prod 101:137–147CrossRef
Zurück zum Zitat Crawford RH (2011) Life cycle assessment in the built environment. Spon Press, LondonCrossRef Crawford RH (2011) Life cycle assessment in the built environment. Spon Press, LondonCrossRef
Zurück zum Zitat Dakwale VA, Ralegaonkar RV, Mandavgane S (2011) Improving environmental performance of building through increased energy efficiency: a review. Sustain Cities Soc 1(4):211–218CrossRef Dakwale VA, Ralegaonkar RV, Mandavgane S (2011) Improving environmental performance of building through increased energy efficiency: a review. Sustain Cities Soc 1(4):211–218CrossRef
Zurück zum Zitat Department of the Environmental and Heritage (2004) Adaptive reuse: preserving our past, building our future, s.l.: s.n Department of the Environmental and Heritage (2004) Adaptive reuse: preserving our past, building our future, s.l.: s.n
Zurück zum Zitat Dhakal S (2010) GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr Opin Environ Sustain 2(4):277–283CrossRef Dhakal S (2010) GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr Opin Environ Sustain 2(4):277–283CrossRef
Zurück zum Zitat Ding GK (2004) The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities. University of Technology, Sydney Ding GK (2004) The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities. University of Technology, Sydney
Zurück zum Zitat Dixit MK, Fernandez-Solis JL, Lavy S, Culp CH (2010) Identification of parameters for embodied energy measurement: a literature review. Energy Build 42(8):1238–1247CrossRef Dixit MK, Fernandez-Solis JL, Lavy S, Culp CH (2010) Identification of parameters for embodied energy measurement: a literature review. Energy Build 42(8):1238–1247CrossRef
Zurück zum Zitat Dutil Y, Rousse D, Quesada G (2011) Sustainable buildings: an ever evolving target. Sustainability 3(2):443–464CrossRef Dutil Y, Rousse D, Quesada G (2011) Sustainable buildings: an ever evolving target. Sustainability 3(2):443–464CrossRef
Zurück zum Zitat Foraboschi P, Mercanzin M, Trabucco D (2014) Sustainable structural design of tall buildings based on embodied energy. Energy Build 68:254–269CrossRef Foraboschi P, Mercanzin M, Trabucco D (2014) Sustainable structural design of tall buildings based on embodied energy. Energy Build 68:254–269CrossRef
Zurück zum Zitat Gajewski A, Siergiejuk J, Szulborski K (2013) Carbon dioxide emission while heating in selected European countries. Energy Build 65:197–204CrossRef Gajewski A, Siergiejuk J, Szulborski K (2013) Carbon dioxide emission while heating in selected European countries. Energy Build 65:197–204CrossRef
Zurück zum Zitat Gan VJL et al (2017) Sustainability analyses of embodied carbon and construction cost in high-rise buildings using different materials and structural forms. HKIE Trans 24(4):216–227CrossRef Gan VJL et al (2017) Sustainability analyses of embodied carbon and construction cost in high-rise buildings using different materials and structural forms. HKIE Trans 24(4):216–227CrossRef
Zurück zum Zitat Giesekam J, Barrett JR, Taylor P (2015) Construction sector views on low carbon building materials. Build Res Inf 44(4):423–444CrossRef Giesekam J, Barrett JR, Taylor P (2015) Construction sector views on low carbon building materials. Build Res Inf 44(4):423–444CrossRef
Zurück zum Zitat Gonzalez MJ, Navarro JG (2006) Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: practical case study of three houses of low environmental impact. Build Environ 41(7):902–909CrossRef Gonzalez MJ, Navarro JG (2006) Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: practical case study of three houses of low environmental impact. Build Environ 41(7):902–909CrossRef
Zurück zum Zitat Green Construction Board (2013) Low carbon routemap for the UK built environment, s.l.: s.n Green Construction Board (2013) Low carbon routemap for the UK built environment, s.l.: s.n
Zurück zum Zitat Gustavsson L, Joelsson A, Sathre R (2010) Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy Build 42(2):230–242CrossRef Gustavsson L, Joelsson A, Sathre R (2010) Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy Build 42(2):230–242CrossRef
Zurück zum Zitat Hakkinen T, Kuittinen M, Ruuska A, Jung N (2015) Reducing embodied carbon during the design process of buildings. J Build Eng 4:1–13CrossRef Hakkinen T, Kuittinen M, Ruuska A, Jung N (2015) Reducing embodied carbon during the design process of buildings. J Build Eng 4:1–13CrossRef
Zurück zum Zitat Hammad AWA, Akbarnezhad A, Rey D, Waller ST (2016) A computational method for estimating travel frequencies in site layout planning. J Constr Eng Manag 142(5):04015102CrossRef Hammad AWA, Akbarnezhad A, Rey D, Waller ST (2016) A computational method for estimating travel frequencies in site layout planning. J Constr Eng Manag 142(5):04015102CrossRef
Zurück zum Zitat Higuchi T, Morioka M, Yoshioka I, Yokozeki K (2014) Development of a new ecological concrete with CO2 emissions below zero. Constr Build Mater 67:338–343CrossRef Higuchi T, Morioka M, Yoshioka I, Yokozeki K (2014) Development of a new ecological concrete with CO2 emissions below zero. Constr Build Mater 67:338–343CrossRef
Zurück zum Zitat Huang W et al (2017) Carbon footprint and carbon emission reduction of urban buildings: a case in Xiamen City, China. Proc Eng 198:1007–1017CrossRef Huang W et al (2017) Carbon footprint and carbon emission reduction of urban buildings: a case in Xiamen City, China. Proc Eng 198:1007–1017CrossRef
Zurück zum Zitat Ibn-Mohammed T et al (2013) Operational vs. embodied emissions in buildings – a review of current trends. Energy Build 66:232–245CrossRef Ibn-Mohammed T et al (2013) Operational vs. embodied emissions in buildings – a review of current trends. Energy Build 66:232–245CrossRef
Zurück zum Zitat Imbabi MS, Carrigan C, McKenna S (2012) Trends and developments in green cement and concrete technology. Int J Sustain Built Environ 1(2):194–216CrossRef Imbabi MS, Carrigan C, McKenna S (2012) Trends and developments in green cement and concrete technology. Int J Sustain Built Environ 1(2):194–216CrossRef
Zurück zum Zitat IPCC (2007) Climate change 2007: mitigation of climate change Working Group III contribution to the fourth Assessment Report of the International Panel on climate Change. Cambridge University Press, Cambridge, United Kingdom IPCC (2007) Climate change 2007: mitigation of climate change Working Group III contribution to the fourth Assessment Report of the International Panel on climate Change. Cambridge University Press, Cambridge, United Kingdom
Zurück zum Zitat Iwaro J, Mwasha A (2013) The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. Int J Sustain Built Environ 2(2):153–171CrossRef Iwaro J, Mwasha A (2013) The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. Int J Sustain Built Environ 2(2):153–171CrossRef
Zurück zum Zitat Junnila S, Horvath A (2003) Life-cycle environmental effects of an office building. J Infrastruct Syst 9:157–166CrossRef Junnila S, Horvath A (2003) Life-cycle environmental effects of an office building. J Infrastruct Syst 9:157–166CrossRef
Zurück zum Zitat Kang G et al (2015) Statistical analysis of embodied carbon emission for building construction. Energy Build 105:326–333CrossRef Kang G et al (2015) Statistical analysis of embodied carbon emission for building construction. Energy Build 105:326–333CrossRef
Zurück zum Zitat Kwok KYG, Kim J, Chong WKO, Ariaratnam ST (2016) Structuring a comprehensive carbon-emission framework for the whole lifecycle of building, operation, and construction. J Architect Eng 22(3):04016006CrossRef Kwok KYG, Kim J, Chong WKO, Ariaratnam ST (2016) Structuring a comprehensive carbon-emission framework for the whole lifecycle of building, operation, and construction. J Architect Eng 22(3):04016006CrossRef
Zurück zum Zitat Lai JH, Yik FW, Man C (2012) Carbon audit: a literature review and an empirical study on a hotel. Facilities 30(9/10):417–431CrossRef Lai JH, Yik FW, Man C (2012) Carbon audit: a literature review and an empirical study on a hotel. Facilities 30(9/10):417–431CrossRef
Zurück zum Zitat Lee B, Trcka M, Hensen JL (2011) Embodied energy of building materials and green building rating systems – a case study for industrial halls. Sustain Cities Soc 1(2):67–71CrossRef Lee B, Trcka M, Hensen JL (2011) Embodied energy of building materials and green building rating systems – a case study for industrial halls. Sustain Cities Soc 1(2):67–71CrossRef
Zurück zum Zitat Lewis P et al (2009) Requirements and incentives for reducing construction vehicle emissions and comparison of nonroad diesel engine emissions data sources. J Constr Eng Manag 135:341–351CrossRef Lewis P et al (2009) Requirements and incentives for reducing construction vehicle emissions and comparison of nonroad diesel engine emissions data sources. J Constr Eng Manag 135:341–351CrossRef
Zurück zum Zitat Lockie S, Berebecki P (2012) Methodology to calculate embodied carbon of materials (RICS). Royal Institute of Chartered Surveyors, United Kingdom Lockie S, Berebecki P (2012) Methodology to calculate embodied carbon of materials (RICS). Royal Institute of Chartered Surveyors, United Kingdom
Zurück zum Zitat Lopez-Mesa B, Pitarch A, Tomas A, Gallego T (2009) Comparison of environmental impacts of building structures with in situ cast floors and with precast concrete floors. Build Environ 44(4):699–712CrossRef Lopez-Mesa B, Pitarch A, Tomas A, Gallego T (2009) Comparison of environmental impacts of building structures with in situ cast floors and with precast concrete floors. Build Environ 44(4):699–712CrossRef
Zurück zum Zitat Martos JL, Styles D, Schoenberger H, Zeschmar-Lahl B (2018) Construction and demolition waste best management practice in Europe. Resour Conserv Recycl 136:166–178CrossRef Martos JL, Styles D, Schoenberger H, Zeschmar-Lahl B (2018) Construction and demolition waste best management practice in Europe. Resour Conserv Recycl 136:166–178CrossRef
Zurück zum Zitat Monahan J, Powell J (2011) An embodied carbon and energy analysis of modern methods of construction in housing: a case study using a lifecycle assessment framework. Energy Build 43(1):179–188CrossRef Monahan J, Powell J (2011) An embodied carbon and energy analysis of modern methods of construction in housing: a case study using a lifecycle assessment framework. Energy Build 43(1):179–188CrossRef
Zurück zum Zitat Nadoushani ZM, Akbarnezhad A (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build 102:337–346CrossRef Nadoushani ZM, Akbarnezhad A (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build 102:337–346CrossRef
Zurück zum Zitat Nadoushani ZSM, Hammad AWA, Akbarnezhad A (2017) Location optimization of tower crane and allocation of material supply points in a construction site considering operating and rental costs. J Constr Eng Manag 143(1):04016089CrossRef Nadoushani ZSM, Hammad AWA, Akbarnezhad A (2017) Location optimization of tower crane and allocation of material supply points in a construction site considering operating and rental costs. J Constr Eng Manag 143(1):04016089CrossRef
Zurück zum Zitat Ng W, Chau C (2015) New life of the building materials - recycle, reuse and recovery. Energy Proc 75:2884–2891CrossRef Ng W, Chau C (2015) New life of the building materials - recycle, reuse and recovery. Energy Proc 75:2884–2891CrossRef
Zurück zum Zitat Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23(1):28–39CrossRef Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23(1):28–39CrossRef
Zurück zum Zitat Ozkaymak M et al (2017) CO2 emission during the combustion of Orhaneli lignite coal. World J Eng 14(1):27–34CrossRef Ozkaymak M et al (2017) CO2 emission during the combustion of Orhaneli lignite coal. World J Eng 14(1):27–34CrossRef
Zurück zum Zitat Pomponi F, Moncaster A (2016) Embodied carbon mitigation and reduction in the built environment – what does the evidence say? J Environ Manag 181:687–700CrossRef Pomponi F, Moncaster A (2016) Embodied carbon mitigation and reduction in the built environment – what does the evidence say? J Environ Manag 181:687–700CrossRef
Zurück zum Zitat Rai D, Sodagar B, Fieldson R, Hu X (2011) Assessment of CO2 emissions reduction in a distribution warehouse. Energy 36(4):2271–2277CrossRef Rai D, Sodagar B, Fieldson R, Hu X (2011) Assessment of CO2 emissions reduction in a distribution warehouse. Energy 36(4):2271–2277CrossRef
Zurück zum Zitat Ramesh T, Prakash R, Shukla K (2010) Life cycle energy analysis of buildings: an overview. Energy Build 42(10):1592–1600CrossRef Ramesh T, Prakash R, Shukla K (2010) Life cycle energy analysis of buildings: an overview. Energy Build 42(10):1592–1600CrossRef
Zurück zum Zitat Rashid AF, Yusoff S (2015) A review of life cycle assessment method for building industry. Renew Sustain Energy Rev 45:244–248CrossRef Rashid AF, Yusoff S (2015) A review of life cycle assessment method for building industry. Renew Sustain Energy Rev 45:244–248CrossRef
Zurück zum Zitat Reddy BV (2009) Sustainable materials for low carbon buildings. Int J Low-Carbon Technol 4(3):175–181CrossRef Reddy BV (2009) Sustainable materials for low carbon buildings. Int J Low-Carbon Technol 4(3):175–181CrossRef
Zurück zum Zitat Saghafi MD, Teshnizi ZSH (2011) Recycling value of building materials in building assessment systems. Energy Build 43(11):3181–3188CrossRef Saghafi MD, Teshnizi ZSH (2011) Recycling value of building materials in building assessment systems. Energy Build 43(11):3181–3188CrossRef
Zurück zum Zitat Sandanayake M, Zhang G, Setunge S (2016) Environmental emissions at foundation construction stage of buildings – two case studies. Build Environ 95:189–198CrossRef Sandanayake M, Zhang G, Setunge S (2016) Environmental emissions at foundation construction stage of buildings – two case studies. Build Environ 95:189–198CrossRef
Zurück zum Zitat Serrano AR, Alvarez SP (2016) Life cycle assessment in building: a case study on the energy and emissions impact related to the choice of housing typologies and construction process in Spain. Sustainability 8(3):287CrossRef Serrano AR, Alvarez SP (2016) Life cycle assessment in building: a case study on the energy and emissions impact related to the choice of housing typologies and construction process in Spain. Sustainability 8(3):287CrossRef
Zurück zum Zitat Shi X, Yang W (2013) Performance-driven architectural design and optimization technique from a perspective of architects. Autom Constr 32:125–135CrossRef Shi X, Yang W (2013) Performance-driven architectural design and optimization technique from a perspective of architects. Autom Constr 32:125–135CrossRef
Zurück zum Zitat Thongkamsuk P, Sudasna K, Tondee T (2017) Waste generated in high-rise buildings construction: a current situation in Thailand. Energy Proc 138:411–416CrossRef Thongkamsuk P, Sudasna K, Tondee T (2017) Waste generated in high-rise buildings construction: a current situation in Thailand. Energy Proc 138:411–416CrossRef
Zurück zum Zitat Thormark C (2002) A low energy building in a life cycle – its embodied energy, energy need for operation and recycling potential. Build Environ 37(4):429–435CrossRef Thormark C (2002) A low energy building in a life cycle – its embodied energy, energy need for operation and recycling potential. Build Environ 37(4):429–435CrossRef
Zurück zum Zitat Upton B, Miner R, Spinney M, Heath LS (2008) The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 32(1):1–10CrossRef Upton B, Miner R, Spinney M, Heath LS (2008) The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 32(1):1–10CrossRef
Zurück zum Zitat Wheating NC (2017) Embodied carbon: a framework for prioritizing and reducing emissions in the building industry. s.l.: s.n Wheating NC (2017) Embodied carbon: a framework for prioritizing and reducing emissions in the building industry. s.l.: s.n
Zurück zum Zitat Wilkinson SJ, James K, Reed R (2009) Using building adaptation to deliver sustainability in Australia. Struct Surv 27(1):46–61CrossRef Wilkinson SJ, James K, Reed R (2009) Using building adaptation to deliver sustainability in Australia. Struct Surv 27(1):46–61CrossRef
Zurück zum Zitat Wu P, Feng Y, Pienaar J, Xia B (2015) A review of benchmarking in carbon labelling schemes for building materials. J Clean Prod 109:108–117CrossRef Wu P, Feng Y, Pienaar J, Xia B (2015) A review of benchmarking in carbon labelling schemes for building materials. J Clean Prod 109:108–117CrossRef
Zurück zum Zitat Wu P, Xia B, Pienaar J, Zhao X (2014) The past, present and future of carbon labelling for construction materials – a review. Build Environ 77:160–168CrossRef Wu P, Xia B, Pienaar J, Zhao X (2014) The past, present and future of carbon labelling for construction materials – a review. Build Environ 77:160–168CrossRef
Zurück zum Zitat Yeo D, Gabbai RD (2011) Sustainable design of reinforced concrete structures through embodied energy optimization. Energy Build 43(8):2028–2033CrossRef Yeo D, Gabbai RD (2011) Sustainable design of reinforced concrete structures through embodied energy optimization. Energy Build 43(8):2028–2033CrossRef
Zurück zum Zitat Yu D, Tan H, Ruan Y (2011) A future bamboo-structure residential building prototype in China: life cycle assessment of energy use and carbon emission. Energy Build 43(10):2638–2646CrossRef Yu D, Tan H, Ruan Y (2011) A future bamboo-structure residential building prototype in China: life cycle assessment of energy use and carbon emission. Energy Build 43(10):2638–2646CrossRef
Zurück zum Zitat Zhong Y, Wu P (2015) Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. J Clean Prod 108:748–756CrossRef Zhong Y, Wu P (2015) Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. J Clean Prod 108:748–756CrossRef
Metadaten
Titel
Embodied Carbon Reduction Strategies for Buildings
verfasst von
L. M. T. Kumari
U. Kulatunga
N. Madusanka
N. Jayasena
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9749-3_28