Skip to main content

2018 | OriginalPaper | Buchkapitel

Energetic and Exergetic Performance Comparisons of Various Flow Sheet Options of Magnesium-Chlorine Cycle

verfasst von : Hasan Ozcan, Ibrahim Dincer

Erschienen in: Exergy for A Better Environment and Improved Sustainability 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the past decade thermochemical and/or hybrid cycles using essentially heat (without/with some electricity) are preferred over conventional electrolysis where the electricity is the main energy input. Therefore, such cycles help significantly reduce the electrical work consumption by adapting some consecutive chemical reactions which utilize thermal energy at medium to low temperatures that can match with renewable and existing nuclear energy sources. The ideal magnesium-chlorine cycle consists of three steps, namely hydrolysis of MgCl2, chlorination of MgO, and electrolysis of HCl. In this particular study, we develop two newly proposed configurations to compare with the ideal version of this cycle. The first configuration uses an intermediate step through the hydrolysis reaction while a fourth step is introduced in the second configuration where HCl production is accomplished in dry form. Thermodynamic comparisons are carried out using energy and exergy analysis, and the four-step configuration practically shows the highest performance and can compete with the conventional splitting of water by electrolysis. In summary, the present options provide potential solutions for sustainable hydrogen production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bartling, J., Winnick, J.: Chlorine recovery from anhydrous hydrogen chloride in a molten salt electrolyte membrane cell. J. Electrochem. Soc. 150, D99–D107 (2003)CrossRef Bartling, J., Winnick, J.: Chlorine recovery from anhydrous hydrogen chloride in a molten salt electrolyte membrane cell. J. Electrochem. Soc. 150, D99–D107 (2003)CrossRef
Zurück zum Zitat Carmo, M., Fritz, D.L., Mergel, J., Stolten, D.: A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy. 38, 4901–4934 (2013)CrossRef Carmo, M., Fritz, D.L., Mergel, J., Stolten, D.: A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy. 38, 4901–4934 (2013)CrossRef
Zurück zum Zitat Dincer, I., Rosen, M.A.: Exergy: Energy, Environment and Sustainable Development. Newnes, London (2012) Dincer, I., Rosen, M.A.: Exergy: Energy, Environment and Sustainable Development. Newnes, London (2012)
Zurück zum Zitat Dincer, I., Zamfirescu, C.: Sustainable hydrogen production options and role of AIHE. Int. J. Hydrog. Energy. 37, 16266–16286 (2012)CrossRef Dincer, I., Zamfirescu, C.: Sustainable hydrogen production options and role of AIHE. Int. J. Hydrog. Energy. 37, 16266–16286 (2012)CrossRef
Zurück zum Zitat Eames, D.J., Newman, J.: Electrochemical conversion of anhydrous HCl to Cl2 using a solid-polymer-electrolyte electrolysis cell. J. Electrochem. Soc. 142, 3619–3625 (1995)CrossRef Eames, D.J., Newman, J.: Electrochemical conversion of anhydrous HCl to Cl2 using a solid-polymer-electrolyte electrolysis cell. J. Electrochem. Soc. 142, 3619–3625 (1995)CrossRef
Zurück zum Zitat Gooding, C.H.: Analysis of alternative flow sheets for the hybrid chlorine cycle. Int. J. Hydrog. Energy. 34, 4168–4178 (2009)CrossRef Gooding, C.H.: Analysis of alternative flow sheets for the hybrid chlorine cycle. Int. J. Hydrog. Energy. 34, 4168–4178 (2009)CrossRef
Zurück zum Zitat Hesson, R.N.: Kinetics of the chlorination of magnesium oxide, No. IS-T-823. Ames Lab., IA (USA) (1979) Hesson, R.N.: Kinetics of the chlorination of magnesium oxide, No. IS-T-823. Ames Lab., IA (USA) (1979)
Zurück zum Zitat Kashani-Nejad, S., Ng, K.-W., Harris, R.: Preparation of MgOHCl by controlled dehydration of MgCl2· 6H2 O. Metall. Mater. Trans. B. 35, 405–406 (2004)CrossRef Kashani-Nejad, S., Ng, K.-W., Harris, R.: Preparation of MgOHCl by controlled dehydration of MgCl2· 6H2 O. Metall. Mater. Trans. B. 35, 405–406 (2004)CrossRef
Zurück zum Zitat Kashani-Nejad, S., Ng, K.-W., Harris, R.: MgOHCl thermal decomposition kinetics. Metall. Mater. Trans. B. 36, 153–157 (2005)CrossRef Kashani-Nejad, S., Ng, K.-W., Harris, R.: MgOHCl thermal decomposition kinetics. Metall. Mater. Trans. B. 36, 153–157 (2005)CrossRef
Zurück zum Zitat Kashani-Nejad, S., Ng, K.W., Harris, R.: Chlorination of MgOHCl with HCl gas. Miner. Process. Ext. Metall. 115, 121–122 (2006)CrossRef Kashani-Nejad, S., Ng, K.W., Harris, R.: Chlorination of MgOHCl with HCl gas. Miner. Process. Ext. Metall. 115, 121–122 (2006)CrossRef
Zurück zum Zitat Kelley, K.K.: Energy requirements and equilibria in the dehydration, hydrolysis, and decomposition of Magnesium-Chloride. U.S. Department of Interior, US Govt. Print. Off, Technical Paper (1945) Kelley, K.K.: Energy requirements and equilibria in the dehydration, hydrolysis, and decomposition of Magnesium-Chloride. U.S. Department of Interior, US Govt. Print. Off, Technical Paper (1945)
Zurück zum Zitat Kipouros, G.J., Sadoway, D.R.: A thermochemical analysis of the production of anhydrous MgCl 2. J. Light. Met. 1, 111–117 (2001)CrossRef Kipouros, G.J., Sadoway, D.R.: A thermochemical analysis of the production of anhydrous MgCl 2. J. Light. Met. 1, 111–117 (2001)CrossRef
Zurück zum Zitat Lewis, M.A., Masin, J.G., O’Hare, P.A.: Evaluation of alternative thermochemical cycles. Part I: the methodology. Int. J. Hydrog. Energy. 34, 4115–4124 (2009)CrossRef Lewis, M.A., Masin, J.G., O’Hare, P.A.: Evaluation of alternative thermochemical cycles. Part I: the methodology. Int. J. Hydrog. Energy. 34, 4115–4124 (2009)CrossRef
Zurück zum Zitat Motupally, S., Becker, A.J., Weidner, J.W.: Water transport in polymer electrolyte membrane electrolyzers used to recycle anhydrous HCl I. Characterization of diffusion and electro-osmotic drag. J. Electrochem. Soc. 149, D63–D71 (2002)CrossRef Motupally, S., Becker, A.J., Weidner, J.W.: Water transport in polymer electrolyte membrane electrolyzers used to recycle anhydrous HCl I. Characterization of diffusion and electro-osmotic drag. J. Electrochem. Soc. 149, D63–D71 (2002)CrossRef
Zurück zum Zitat Naterer, G.F., Dincer, I., Zamfirescu, C.: Hydrogen Production from Nuclear Energy. Springer, London (2013)CrossRef Naterer, G.F., Dincer, I., Zamfirescu, C.: Hydrogen Production from Nuclear Energy. Springer, London (2013)CrossRef
Zurück zum Zitat Ozcan, H., Dincer, I.: Performance investigation of magnesium–chloride hybrid thermochemical cycle for hydrogen production. Int. J. Hydrog. Energy. 39, 76–85 (2014a)CrossRef Ozcan, H., Dincer, I.: Performance investigation of magnesium–chloride hybrid thermochemical cycle for hydrogen production. Int. J. Hydrog. Energy. 39, 76–85 (2014a)CrossRef
Zurück zum Zitat Ozcan, H., Dincer, I.: Energy and exergy analyses of a solar driven Mg–Cl hybrid thermochemical cycle for co-production of power and hydrogen. Int. J. Hydrogen Energy. 39, 15330–15341 (2014b)CrossRef Ozcan, H., Dincer, I.: Energy and exergy analyses of a solar driven Mg–Cl hybrid thermochemical cycle for co-production of power and hydrogen. Int. J. Hydrogen Energy. 39, 15330–15341 (2014b)CrossRef
Zurück zum Zitat Ozcan, H., Dincer, I.: Modeling of a new four-step magnesium–chlorine cycle with dry HCl capture for more efficient hydrogen production. Int. J. Hydrogen Energy. 41, 7792–7801 (2016a)CrossRef Ozcan, H., Dincer, I.: Modeling of a new four-step magnesium–chlorine cycle with dry HCl capture for more efficient hydrogen production. Int. J. Hydrogen Energy. 41, 7792–7801 (2016a)CrossRef
Zurück zum Zitat Ozcan, H., Dincer, I.: Comparative performance assessment of three configurations of magnesium–chlorine cycle. Int. J. Hydrogen Energy. 41, 845–856 (2016b)CrossRef Ozcan, H., Dincer, I.: Comparative performance assessment of three configurations of magnesium–chlorine cycle. Int. J. Hydrogen Energy. 41, 845–856 (2016b)CrossRef
Zurück zum Zitat Simpson, M.F., Hermann, S.D., Boyle, B.D.: A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int. J. Hydrog. Energy. 31, 1241–1246 (2006)CrossRef Simpson, M.F., Hermann, S.D., Boyle, B.D.: A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int. J. Hydrog. Energy. 31, 1241–1246 (2006)CrossRef
Zurück zum Zitat Sivasubramanian, P., Ramasamy, R.P., Freire, F.J., Holland, C.E., Weidner, J.W.: Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer. Int. J. Hydrog. Energy. 32, 463–468 (2007)CrossRef Sivasubramanian, P., Ramasamy, R.P., Freire, F.J., Holland, C.E., Weidner, J.W.: Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer. Int. J. Hydrog. Energy. 32, 463–468 (2007)CrossRef
Zurück zum Zitat Veziroglu, T.N., Barbir, F.: Hydrogen: the wonder fuel. Int. J. Hydrog. Energy. 17, 391–404 (1992)CrossRef Veziroglu, T.N., Barbir, F.: Hydrogen: the wonder fuel. Int. J. Hydrog. Energy. 17, 391–404 (1992)CrossRef
Zurück zum Zitat Yan, X.L., Hino, R.: Nuclear Hydrogen Production Handbook, pp. 50–54. CRC Press, Boca Raton (2011)CrossRef Yan, X.L., Hino, R.: Nuclear Hydrogen Production Handbook, pp. 50–54. CRC Press, Boca Raton (2011)CrossRef
Metadaten
Titel
Energetic and Exergetic Performance Comparisons of Various Flow Sheet Options of Magnesium-Chlorine Cycle
verfasst von
Hasan Ozcan
Ibrahim Dincer
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62572-0_76