Skip to main content

2020 | OriginalPaper | Buchkapitel

Energy Efficiency and Ecological Impact of the Vehicles

verfasst von : Ivan Evtimov, Rosen Ivanov, Hristo Stanchev, Georgi Kadikyanov, Gergana Staneva, Milen Sapundzhiev

Erschienen in: Ecology in Transport: Problems and Solutions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the energy characteristics of BEV and HEV were presented. Original experimental results for energy consumption are presented. The life cycle assessment of main types of ecological vehicles was done. As a base of comparison, the primary energy and CO2 emissions of conventional gasoline vehicle was used. An area, concerning vehicles, which are more effective in economic and ecological aspects, at average Emission factor of EU-28, is defined. For a separate country, this area will be different, depend on value of its Emission factor of electricity production. The study gives the evidences for the hypothesis that electric vehicles do not generate emissions at the place, where it runs, can be used for resolving the local problems with air pollutions, but not global.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Chapman L (2006) Transport and climate change: a review. J Transp Geogr 15:354–367CrossRef Chapman L (2006) Transport and climate change: a review. J Transp Geogr 15:354–367CrossRef
7.
Zurück zum Zitat Larminie J, Lowry J (2012) Electric vehicle technology explained. 2nd edn. Wiley Larminie J, Lowry J (2012) Electric vehicle technology explained. 2nd edn. Wiley
9.
Zurück zum Zitat Evtimov I (2015) Electrombility—a reality for sustainable development of the transport and environment protection. University of Ruse Evtimov I (2015) Electrombility—a reality for sustainable development of the transport and environment protection. University of Ruse
10.
Zurück zum Zitat Gordić M, Stamenković D, Popović V, Muždeka S, Mićović A (2017) Electric vehicle conversion: optimisation of parameters in the design process. Tehnički vjesnik 24(4):446–454 Gordić M, Stamenković D, Popović V, Muždeka S, Mićović A (2017) Electric vehicle conversion: optimisation of parameters in the design process. Tehnički vjesnik 24(4):446–454
11.
Zurück zum Zitat Kaleg S, Hapid A, Redho KM (2015) Electric vehicle conversion based on distance, speed and cost requirements. Energy Procedia 68:446–454CrossRef Kaleg S, Hapid A, Redho KM (2015) Electric vehicle conversion based on distance, speed and cost requirements. Energy Procedia 68:446–454CrossRef
12.
Zurück zum Zitat Leitmen S, Brant B (1994) Build your own electric vehicle. McGraw-Hill Leitmen S, Brant B (1994) Build your own electric vehicle. McGraw-Hill
13.
Zurück zum Zitat Gis W, Zóltowski A, Bochenska A (2012) Testing of the electric vehicle in driving cycles. J KONES Powertrain Transp 19:207–221CrossRef Gis W, Zóltowski A, Bochenska A (2012) Testing of the electric vehicle in driving cycles. J KONES Powertrain Transp 19:207–221CrossRef
16.
Zurück zum Zitat Ivanov R, Sapundzhiev M, Kadikyanov G, Staneva G (2018) Energy characteristics of Citroen Berlingo converted to electric vehicle. Transp Probl 3:151–161CrossRef Ivanov R, Sapundzhiev M, Kadikyanov G, Staneva G (2018) Energy characteristics of Citroen Berlingo converted to electric vehicle. Transp Probl 3:151–161CrossRef
19.
Zurück zum Zitat Evtimov I, Ivanov R (2016) Electromobiles. Ruse University Evtimov I, Ivanov R (2016) Electromobiles. Ruse University
21.
Zurück zum Zitat Toyota Hybrid System THS II (2003) Compiled by: Toyota Motor Corporation Toyota Hybrid System THS II (2003) Compiled by: Toyota Motor Corporation
22.
Zurück zum Zitat Zhang H, Zhu Y, Tian G, Chen Q, Chen Y (2004) Optimal energy management strategy for hybrid electric vehicles, Tech Rep 2004-01-0576. SAE, Warrendale, PA Zhang H, Zhu Y, Tian G, Chen Q, Chen Y (2004) Optimal energy management strategy for hybrid electric vehicles, Tech Rep 2004-01-0576. SAE, Warrendale, PA
23.
Zurück zum Zitat Ивaнoв P, Eвтимoв И, Ивaнoв Я (2016) Изcлeдвaнe paзxoдa нa гopивo нa xибpидeн и клacичecки aвтoмoбил в гpaдcки ycлoвия нa движeниe. Pyce, Hayчни тpyдoвe нa Pyceнcки Унивepcитeт, тoм 55, cepия 4, Pyce [In Bulgarian: Ivanov, R., Evtimov, I., Ivanov, Y. Investigation of the fuel consumption of the hybrid and conventional car in urban conditions] Ивaнoв P, Eвтимoв И, Ивaнoв Я (2016) Изcлeдвaнe paзxoдa нa гopивo нa xибpидeн и клacичecки aвтoмoбил в гpaдcки ycлoвия нa движeниe. Pyce, Hayчни тpyдoвe нa Pyceнcки Унивepcитeт, тoм 55, cepия 4, Pyce [In Bulgarian: Ivanov, R., Evtimov, I., Ivanov, Y. Investigation of the fuel consumption of the hybrid and conventional car in urban conditions]
24.
Zurück zum Zitat Conlon B (2005) Comparative analysis of single and combined hybrid electrically variable transmission operating modes. SAE, Warrendale, PA Tech. Rep. 2005-01-1162 Conlon B (2005) Comparative analysis of single and combined hybrid electrically variable transmission operating modes. SAE, Warrendale, PA Tech. Rep. 2005-01-1162
25.
Zurück zum Zitat Ivanov Y, Ivanov R, Kadikyanov G, Staneva G, Danilov I (2019) Study the fuel consumption of hybrid car Toyota Yaris. Transp Probl 1:155–167CrossRef Ivanov Y, Ivanov R, Kadikyanov G, Staneva G, Danilov I (2019) Study the fuel consumption of hybrid car Toyota Yaris. Transp Probl 1:155–167CrossRef
28.
Zurück zum Zitat Jeeninga H, Van Arkel WG, Volkers CH (2002) Performance and acceptance of electric and hybrid vehicles. Determination of attitude shifts and energy consumption of electric and hybrid vehicles used in the ELCIDIS project. ECN-C–02-080 Jeeninga H, Van Arkel WG, Volkers CH (2002) Performance and acceptance of electric and hybrid vehicles. Determination of attitude shifts and energy consumption of electric and hybrid vehicles used in the ELCIDIS project. ECN-C–02-080
30.
Zurück zum Zitat Ehsani M et al (2003) Impact of hybrid electric vehicles on the world’s petroleum consumption and supply. In: Society of automotive engineers (SAE) future transportation technology conference. Paper no. 2003-01-2310 Ehsani M et al (2003) Impact of hybrid electric vehicles on the world’s petroleum consumption and supply. In: Society of automotive engineers (SAE) future transportation technology conference. Paper no. 2003-01-2310
31.
Zurück zum Zitat Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric and fuel cell vehicles. In: Fundamentals, theory and design. 2nd edn. CRC Press Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric and fuel cell vehicles. In: Fundamentals, theory and design. 2nd edn. CRC Press
32.
Zurück zum Zitat Ehsani M, Gao Y, Miller M (2007) Hybrid electric vehicles: Architecture and motor drives. In: Proceedings of the IEEE, Special issue on Electric, hybrid and fuel cells vehicle 95(4):719–728 Ehsani M, Gao Y, Miller M (2007) Hybrid electric vehicles: Architecture and motor drives. In: Proceedings of the IEEE, Special issue on Electric, hybrid and fuel cells vehicle 95(4):719–728
33.
Zurück zum Zitat Manzie C, Watson H, Halgamuge S (2007) Fuel economy improvements for urban driving: Hybrid versus intelligent vehicles. Department of Mechanical and Manufacturing Engineering, The University of Melbourne, Vic. 3010, Australia, Transportation Research Part C15. P. 1–16. http://www-07.ibm.com/ innovation/ au/think/traffic/pdf/hybrid_vs_intelligent_vehicles Manzie C, Watson H, Halgamuge S (2007) Fuel economy improvements for urban driving: Hybrid versus intelligent vehicles. Department of Mechanical and Manufacturing Engineering, The University of Melbourne, Vic. 3010, Australia, Transportation Research Part C15. P. 1–16. http://​www-07.​ibm.​com/​ innovation/ au/think/traffic/pdf/hybrid_vs_intelligent_vehicles
34.
Zurück zum Zitat Jinming L, Huei P (2008) Modeling and control of a power-split hybrid vehicle. IEEE Trans Control Syst Technol 16(6):1242–1251 Jinming L, Huei P (2008) Modeling and control of a power-split hybrid vehicle. IEEE Trans Control Syst Technol 16(6):1242–1251
42.
Zurück zum Zitat Evtimov I, Ivanov R, Valov N (2012) Research on the energy cost by electric bicycle at different moving regimes. Sozopol BulTrans-2012.20 Evtimov I, Ivanov R, Valov N (2012) Research on the energy cost by electric bicycle at different moving regimes. Sozopol BulTrans-2012.20
43.
Zurück zum Zitat IS0 14040/44:2006 Environmental management—Life cycle assessment IS0 14040/44:2006 Environmental management—Life cycle assessment
46.
Zurück zum Zitat Santiangeli A, Fiori C, Zuccari F, Dell’Era A, Orecchini F, D’Orazio A (2014) Experimental analysis of the auxiliaries consumption in the energy balance of a pre-series plug-in hybrid-electric vehicle. Energy Procedia 45:779–788CrossRef Santiangeli A, Fiori C, Zuccari F, Dell’Era A, Orecchini F, D’Orazio A (2014) Experimental analysis of the auxiliaries consumption in the energy balance of a pre-series plug-in hybrid-electric vehicle. Energy Procedia 45:779–788CrossRef
47.
Zurück zum Zitat Schoettle B, Sivak M, Fujiyama Y (2008) Leds and power consumption of exterior automotive lighting: implications for gasoline and electric vehicles. Report No. UMTRI-2008-48 Schoettle B, Sivak M, Fujiyama Y (2008) Leds and power consumption of exterior automotive lighting: implications for gasoline and electric vehicles. Report No. UMTRI-2008-48
48.
Zurück zum Zitat Vražić M, Barić O, Virtič P (2014) Auxiliary systems consumption in electric vehicle. Przegląd elektrotechniczny 12:172–175 Vražić M, Barić O, Virtič P (2014) Auxiliary systems consumption in electric vehicle. Przegląd elektrotechniczny 12:172–175
51.
Zurück zum Zitat Maшкoв П, Бepкaнт Г (2016) Изcлeдвaнe нa тoплиннoтo нaтoвapвaнe нa cвeтoдиoдни лaмпи зa aвтoмoбилни фapoвe. Hayчнa кoнф. PУ-CУ, тoм 5, cepия 4, P. 66–70 [In Bulgarian: Mashkov P, Gyoch B (2016) Thermal loading investigation of led bulbs for automotive headlights] Maшкoв П, Бepкaнт Г (2016) Изcлeдвaнe нa тoплиннoтo нaтoвapвaнe нa cвeтoдиoдни лaмпи зa aвтoмoбилни фapoвe. Hayчнa кoнф. PУ-CУ, тoм 5, cepия 4, P. 66–70 [In Bulgarian: Mashkov P, Gyoch B (2016) Thermal loading investigation of led bulbs for automotive headlights]
52.
Zurück zum Zitat Maшкoв П, Гьoч Б, Ивaнoв P (2016). Изcлeдвaнe xapaктepиcтики нa cвeтoдиoдни кpyшки зa aвтoмoбилни фapoвe, Бyлтpaнc-2016. P. 118–123 [In Bulgarian: Mashkov P, Gyoch B, Ivanov R (2016) An investigation on characteristics of led bulbs for car headlights] Maшкoв П, Гьoч Б, Ивaнoв P (2016). Изcлeдвaнe xapaктepиcтики нa cвeтoдиoдни кpyшки зa aвтoмoбилни фapoвe, Бyлтpaнc-2016. P. 118–123 [In Bulgarian: Mashkov P, Gyoch B, Ivanov R (2016) An investigation on characteristics of led bulbs for car headlights]
53.
Zurück zum Zitat Evtimov I, Ivanov R, Staneva G, Kadikyanov G (2015) A study on electric bicycle energy efficiency. Transp Probl 3:131–140 Evtimov I, Ivanov R, Staneva G, Kadikyanov G (2015) A study on electric bicycle energy efficiency. Transp Probl 3:131–140
54.
Zurück zum Zitat Mammosser D, Boisvert M, Micheau P (2013) Designing regenerative braking strategies for electric vehicles with an efficiency map. In: 21eme Congres Francais de Mecanique Mammosser D, Boisvert M, Micheau P (2013) Designing regenerative braking strategies for electric vehicles with an efficiency map. In: 21eme Congres Francais de Mecanique
55.
Zurück zum Zitat Ishihara K, Kihira N, Terada N, Iwahori T (2013) Environmental burdens of large lithium-ion batteries. Developed in a Japanese National Project, Central Research Institute of Electric Power Industry, Tokyo, Japan Ishihara K, Kihira N, Terada N, Iwahori T (2013) Environmental burdens of large lithium-ion batteries. Developed in a Japanese National Project, Central Research Institute of Electric Power Industry, Tokyo, Japan
56.
Zurück zum Zitat Bakey K (2015) The production of hydrogen gas: steam methane reforming. ENGL 202C—Process Description Bakey K (2015) The production of hydrogen gas: steam methane reforming. ENGL 202C—Process Description
57.
Zurück zum Zitat Burmistrz P, Czepirsk L, Gazda-Grzywacz M (2016) Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach. In: E3S web of conferences 10 Burmistrz P, Czepirsk L, Gazda-Grzywacz M (2016) Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach. In: E3S web of conferences 10
58.
Zurück zum Zitat Granovskii M, Dincer I, Rosen M (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrogen Energy 31:337–352CrossRef Granovskii M, Dincer I, Rosen M (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrogen Energy 31:337–352CrossRef
59.
Zurück zum Zitat Mehmeti A et al (2018) Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5(2):24 Mehmeti A et al (2018) Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5(2):24
60.
Zurück zum Zitat Ruether J et al (eds) (2005) Life-cycle analysis of greenhouse gas emissions for hydrogen fuel production in the United States from LNG and coal. DOE/NETL-2006/1227. National Energy Technology Laboratory, NETL Ruether J et al (eds) (2005) Life-cycle analysis of greenhouse gas emissions for hydrogen fuel production in the United States from LNG and coal. DOE/NETL-2006/1227. National Energy Technology Laboratory, NETL
61.
Zurück zum Zitat Peng TD, Zhou S, Yuan Z, Ou XM (2017) Life cycle greenhouse gas analysis of multiple vehicle fuel pathways in China. Sustainability 9(2183):1–24 Peng TD, Zhou S, Yuan Z, Ou XM (2017) Life cycle greenhouse gas analysis of multiple vehicle fuel pathways in China. Sustainability 9(2183):1–24
66.
Zurück zum Zitat Moro A, Lonza L (2017) Electricity carbon intensity in European Member States: impacts on GHG emissions of electric vehicles. Transp Res Part D: Transp Environ 64:5–14CrossRef Moro A, Lonza L (2017) Electricity carbon intensity in European Member States: impacts on GHG emissions of electric vehicles. Transp Res Part D: Transp Environ 64:5–14CrossRef
70.
Zurück zum Zitat Thomas CE (2008) Fuel cell and battery electric vehicles compared. Comparison of transportation options in a carbon-constrained world: hydrogen, plug-in hybrids and biofuels. In: The national hydrogen association annual meeting, Sacramento Thomas CE (2008) Fuel cell and battery electric vehicles compared. Comparison of transportation options in a carbon-constrained world: hydrogen, plug-in hybrids and biofuels. In: The national hydrogen association annual meeting, Sacramento
71.
Zurück zum Zitat Bakker D (2010) Battery electric vehicles. Performance, CO2 emissions, lifecycle costs and advanced battery technology development. Master thesis. Sustainable Development, Energy and Resources, Copernicus institute University of Utrecht Bakker D (2010) Battery electric vehicles. Performance, CO2 emissions, lifecycle costs and advanced battery technology development. Master thesis. Sustainable Development, Energy and Resources, Copernicus institute University of Utrecht
72.
Zurück zum Zitat Brennan J, Barder T (2016) Battery electric vehicles versus internal combustion engine vehicles. A United States-based comprehensive assessment, Arthur D. Little 48 Brennan J, Barder T (2016) Battery electric vehicles versus internal combustion engine vehicles. A United States-based comprehensive assessment, Arthur D. Little 48
73.
Zurück zum Zitat Evtimov I, Ivanov R, Kadikyanov G (2016) A comparative analysis of the vehicles energy performance. BulTrans-2016, Sozopol Evtimov I, Ivanov R, Kadikyanov G (2016) A comparative analysis of the vehicles energy performance. BulTrans-2016, Sozopol
74.
Zurück zum Zitat Evtimov I, Ivanov R, Kadikyanov G, Staneva G (2018) Life cycle assessment for electric and conventional cars concerning energy consumption and CO2 emissions. In: MATEC web of conferences, 234, 02007, pp 1–5 Evtimov I, Ivanov R, Kadikyanov G, Staneva G (2018) Life cycle assessment for electric and conventional cars concerning energy consumption and CO2 emissions. In: MATEC web of conferences, 234, 02007, pp 1–5
75.
Zurück zum Zitat Ivanov R, Evtimov I, Ivanova D, Staneva G, Kadikyanov G, Sapundjiev M (2019) Impact of renewable energy on the environmental efficiency of electric vehicles. Wroclaw, ISC RESRB-19 Ivanov R, Evtimov I, Ivanova D, Staneva G, Kadikyanov G, Sapundjiev M (2019) Impact of renewable energy on the environmental efficiency of electric vehicles. Wroclaw, ISC RESRB-19
76.
Zurück zum Zitat Nemes A, Dobó Z, Árpád BP (2014) Fully electric vehicles in practice. Mater Sci Eng 39(2):69–75 Nemes A, Dobó Z, Árpád BP (2014) Fully electric vehicles in practice. Mater Sci Eng 39(2):69–75
77.
Zurück zum Zitat Palou-Rivera I et al (2011) Updates to petroleum refining and upstream emissions. Center for Transportation Research Argonne National Laboratory, CTR/Argonne Palou-Rivera I et al (2011) Updates to petroleum refining and upstream emissions. Center for Transportation Research Argonne National Laboratory, CTR/Argonne
80.
Zurück zum Zitat Fischer R, Elfgren E, Toffolo A (2018) Energy supply potentials in the northern counties of Finland, Norway and Sweden towards sustainable Nordic electricity and heating sectors. Energy Engineering, Luleå University of Technology Fischer R, Elfgren E, Toffolo A (2018) Energy supply potentials in the northern counties of Finland, Norway and Sweden towards sustainable Nordic electricity and heating sectors. Energy Engineering, Luleå University of Technology
84.
Zurück zum Zitat Wang M (2008) Estimation of energy efficiencies of U.S. petroleum refineries. Center for Transportation Research, Argonne National Laboratory Wang M (2008) Estimation of energy efficiencies of U.S. petroleum refineries. Center for Transportation Research, Argonne National Laboratory
88.
Zurück zum Zitat Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32(9):1543–1559CrossRef Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32(9):1543–1559CrossRef
92.
Zurück zum Zitat Askari MB et al (2015) Types of solar cells and application. Am J Opt Photonics 3(5):94–113CrossRef Askari MB et al (2015) Types of solar cells and application. Am J Opt Photonics 3(5):94–113CrossRef
93.
Zurück zum Zitat Pehnt M (2003) Life-cycle analysis of fuel cell system components. Volume 4, Part 13 in Handbook of fuel cells—fundamentals, technology and applications. Wiley, Chichester, pp 1293–1317 Pehnt M (2003) Life-cycle analysis of fuel cell system components. Volume 4, Part 13 in Handbook of fuel cells—fundamentals, technology and applications. Wiley, Chichester, pp 1293–1317
94.
Zurück zum Zitat Dhanushkodi S, Mahinpey N, Srinivasan A, Wilson M (2008) Life cycle analysis of fuel cell technology. J Environ Inf 11(1):36–44CrossRef Dhanushkodi S, Mahinpey N, Srinivasan A, Wilson M (2008) Life cycle analysis of fuel cell technology. J Environ Inf 11(1):36–44CrossRef
95.
Zurück zum Zitat Braga LB et al (2017) Hydrogen production processes. In: Silveira JL (ed) Sustainable hydrogen production processes green energy and technology. Springer Braga LB et al (2017) Hydrogen production processes. In: Silveira JL (ed) Sustainable hydrogen production processes green energy and technology. Springer
96.
Zurück zum Zitat Eriksson O (2017) Nuclear power and resource efficiency—a proposal for a revised primary energy factor. Department of Building, Energy and Environmental Engineering, Faculty of Engineering and Sustainable Development, University of Gävle SE 801 76 Sweden Eriksson O (2017) Nuclear power and resource efficiency—a proposal for a revised primary energy factor. Department of Building, Energy and Environmental Engineering, Faculty of Engineering and Sustainable Development, University of Gävle SE 801 76 Sweden
97.
Zurück zum Zitat Dodds PE, McDowall WAS (2012) A review of hydrogen production technologies for energy system models. UCL Energy Institute University College London. UKSHEC Working Paper No. 6 Dodds PE, McDowall WAS (2012) A review of hydrogen production technologies for energy system models. UCL Energy Institute University College London. UKSHEC Working Paper No. 6
100.
Zurück zum Zitat Stala-Szlugaj K, Grudzinski Z (2016) Energy efficiency and steam coal transport over long distances. In: E3S web of conferences 10, SEED 00089 Stala-Szlugaj K, Grudzinski Z (2016) Energy efficiency and steam coal transport over long distances. In: E3S web of conferences 10, SEED 00089
101.
Zurück zum Zitat Ptasinski K (2008) Efficiency analysis of hydrogen production methods from biomass. Int J Alterna Propuls 2(1):39–49CrossRef Ptasinski K (2008) Efficiency analysis of hydrogen production methods from biomass. Int J Alterna Propuls 2(1):39–49CrossRef
102.
Zurück zum Zitat Bhandari R, Trudewind C, Zapp P (2014) Life cycle assessment of hydrogen production methods—a review. Forschungszentrum Jülich, Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE) Bhandari R, Trudewind C, Zapp P (2014) Life cycle assessment of hydrogen production methods—a review. Forschungszentrum Jülich, Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE)
103.
Zurück zum Zitat Pehnt M (2002) Life cycle assessment of fuel cell systems. Erscheint in fuel cell handbook. Volume 3—Fuel cell technology and applications. J. Wiley Pehnt M (2002) Life cycle assessment of fuel cell systems. Erscheint in fuel cell handbook. Volume 3—Fuel cell technology and applications. J. Wiley
104.
Zurück zum Zitat Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany. Appl Energy 101:103–111CrossRef Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany. Appl Energy 101:103–111CrossRef
105.
Zurück zum Zitat Mirabal S (2003) An economic analysis of hydrogen production technologies using renewable energy resources. A thesis, presented to the graduate school of the University of Florida for the Degree of Master of science, University of Florida Mirabal S (2003) An economic analysis of hydrogen production technologies using renewable energy resources. A thesis, presented to the graduate school of the University of Florida for the Degree of Master of science, University of Florida
107.
Zurück zum Zitat Makridis S (2016) Hydrogen storage and compression. Chapter 1, University of Western Macedonia, GR50132 Kozani, Greece, CH001 Makridis S (2016) Hydrogen storage and compression. Chapter 1, University of Western Macedonia, GR50132 Kozani, Greece, CH001
108.
Zurück zum Zitat Petitpas G, Simon AJ (2017) Liquid hydrogen infrastructure analysis. DOE hydrogen and fuel cells annual merit review. Washington D.C. LLNL-PRES-727907, Project ID#: PD135 June 6th Petitpas G, Simon AJ (2017) Liquid hydrogen infrastructure analysis. DOE hydrogen and fuel cells annual merit review. Washington D.C. LLNL-PRES-727907, Project ID#: PD135 June 6th
109.
Zurück zum Zitat Bielaczyc P, Szczotka A, Woodburn J (2016) A comparison of exhaust emissions from vehicles fuelled with petrol LPG and CNG. In: Scientific conference on automotive vehicles and combustion engines (KONMOT 2016) IOP Conf. Series: Mater Sci Eng 148(1):012060, pp 1–10 Bielaczyc P, Szczotka A, Woodburn J (2016) A comparison of exhaust emissions from vehicles fuelled with petrol LPG and CNG. In: Scientific conference on automotive vehicles and combustion engines (KONMOT 2016) IOP Conf. Series: Mater Sci Eng 148(1):012060, pp 1–10
113.
Zurück zum Zitat Seebregts AJ (2010) Gas-fired power. Energy Tech. System Analysis Program (IEA-ETSAP), Agency Energy Tech Seebregts AJ (2010) Gas-fired power. Energy Tech. System Analysis Program (IEA-ETSAP), Agency Energy Tech
114.
Zurück zum Zitat McKain K, Down A, Raciti SM, Budney J, Hutyra LR, Floerchinger C, Herndon SC, Nehrkorn T, Zahniser MS, Jackson RB, Phillips N, Wofsy SC (2015) Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. PNAS 112(7):1941–1946CrossRef McKain K, Down A, Raciti SM, Budney J, Hutyra LR, Floerchinger C, Herndon SC, Nehrkorn T, Zahniser MS, Jackson RB, Phillips N, Wofsy SC (2015) Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. PNAS 112(7):1941–1946CrossRef
117.
Zurück zum Zitat Abdelmajeed MA, Onsa MH, Rabah AA (2009) Management of evaporation losses of gasoline’s storage tanks. Sudan Eng Soc J 55(52):39–43 Abdelmajeed MA, Onsa MH, Rabah AA (2009) Management of evaporation losses of gasoline’s storage tanks. Sudan Eng Soc J 55(52):39–43
118.
Zurück zum Zitat Magaril E (2015) Reducing gasoline loss from evaporation by the introduction of a surface-active fuel additive. Urban Transp XXI. WIT Trans Built Environ 146:233–242 Magaril E (2015) Reducing gasoline loss from evaporation by the introduction of a surface-active fuel additive. Urban Transp XXI. WIT Trans Built Environ 146:233–242
119.
Zurück zum Zitat Kimeu JM (2012) Development of optimum energy use model for a petrol station. A research project report submitted in partial fulfillment for the degree of master of science (energy management) of the University of Nairobi Kimeu JM (2012) Development of optimum energy use model for a petrol station. A research project report submitted in partial fulfillment for the degree of master of science (energy management) of the University of Nairobi
122.
Zurück zum Zitat Unnasch S, Goyal L (2017) Life cycle analysis of LPG transportation fuels under the Californian LCFS. LCA.8103.177.2017 Unnasch S, Goyal L (2017) Life cycle analysis of LPG transportation fuels under the Californian LCFS. LCA.8103.177.2017
125.
Zurück zum Zitat Димитpoв A, Бoгдaнoв К (2002) Eкcплoaтaциoнни мaтepиaли в тpaнcпopтнaтa тexникa. Bapнa [In Bulgarian: Dimitrov A, Bogdanov K (2002) Exploatation materials in transport machinery] Димитpoв A, Бoгдaнoв К (2002) Eкcплoaтaциoнни мaтepиaли в тpaнcпopтнaтa тexникa. Bapнa [In Bulgarian: Dimitrov A, Bogdanov K (2002) Exploatation materials in transport machinery]
126.
Zurück zum Zitat Pimentel D et al (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37:1–12CrossRef Pimentel D et al (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37:1–12CrossRef
127.
Zurück zum Zitat Pawlowska M, Pawlowski A (2017) Advances in Renewable Energy Research. CRC Press, Science Pawlowska M, Pawlowski A (2017) Advances in Renewable Energy Research. CRC Press, Science
131.
Zurück zum Zitat Abhay T (2015) Converting a diesel engine to dual-fuel engine using natural gas. Int J Energy, Sci Eng 1(5):163–169 Abhay T (2015) Converting a diesel engine to dual-fuel engine using natural gas. Int J Energy, Sci Eng 1(5):163–169
132.
Zurück zum Zitat Weaver C, Turner S (1994) Dual fuel natural gas/diesel engines: technology, performance and emissions. In: SAE international, international congress & exposition, Technical Paper 940548 Weaver C, Turner S (1994) Dual fuel natural gas/diesel engines: technology, performance and emissions. In: SAE international, international congress & exposition, Technical Paper 940548
133.
Zurück zum Zitat Papson A, Creutzig F, Schipper L (2010) Compressed air vehicles. Drive-cycle analysis of vehicle performance, environmental impacts and economic costs. Transp Res Record: J Transp Res Board 2191:67–74CrossRef Papson A, Creutzig F, Schipper L (2010) Compressed air vehicles. Drive-cycle analysis of vehicle performance, environmental impacts and economic costs. Transp Res Record: J Transp Res Board 2191:67–74CrossRef
134.
Zurück zum Zitat Creutzig F, Papson A, Schipper L, Kammen DM (2009) Economic and environmental evaluation of compressed-air cars. Environ Res Lett 4(4):044011. PP 1–9 Creutzig F, Papson A, Schipper L, Kammen DM (2009) Economic and environmental evaluation of compressed-air cars. Environ Res Lett 4(4):044011. PP 1–9
135.
Zurück zum Zitat Dimitrova Z, Marechal F (2015) Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization. Appl Energy 151(C):168–177 Dimitrova Z, Marechal F (2015) Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization. Appl Energy 151(C):168–177
136.
Zurück zum Zitat Dimitrova Z, Lourdais P, Marecha F (2015) Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 86:574–588CrossRef Dimitrova Z, Lourdais P, Marecha F (2015) Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 86:574–588CrossRef
137.
Zurück zum Zitat Kumar S, Karthik A (2016) Design and fabrication of compressed air engine bike. Int J Eng Sci Comput 6(7):182–188 Kumar S, Karthik A (2016) Design and fabrication of compressed air engine bike. Int J Eng Sci Comput 6(7):182–188
138.
Zurück zum Zitat Midhun VS, Ramesh A, Sathyanandan M (2014) Comparison of fully pneumatic and pneumatic—electric hybrid configurations for propulsion of a refrigerated vehicle. J Green Eng 1:49–70 Midhun VS, Ramesh A, Sathyanandan M (2014) Comparison of fully pneumatic and pneumatic—electric hybrid configurations for propulsion of a refrigerated vehicle. J Green Eng 1:49–70
139.
Zurück zum Zitat Qihui Yu, Cai Maolin (2015) Experimental analysis of a compressed air engine. J Flow Control, Meas Vis 03(04):144–153CrossRef Qihui Yu, Cai Maolin (2015) Experimental analysis of a compressed air engine. J Flow Control, Meas Vis 03(04):144–153CrossRef
140.
Zurück zum Zitat Evtimov I, Ivanov R, Sapundjiev M (2017) Energy consumption of auxiliary systems of electric cars. In: MATEC web of conferences 133, 06002, pp 1–5 Evtimov I, Ivanov R, Sapundjiev M (2017) Energy consumption of auxiliary systems of electric cars. In: MATEC web of conferences 133, 06002, pp 1–5
141.
Zurück zum Zitat Evtimov I, Ivanov R, Stanchev H, Kadikyanov G, Staneva G (2019) Life cycle assessment of fuel cells electric vehicles. In: XI international scientific conference, transport problems, Katowice Evtimov I, Ivanov R, Stanchev H, Kadikyanov G, Staneva G (2019) Life cycle assessment of fuel cells electric vehicles. In: XI international scientific conference, transport problems, Katowice
142.
Zurück zum Zitat Evtimov I, Ivanov R, Stanchev H (2019) Life cycle assessment of vehicles, using LPG and NG. BulTrans 48–58 Evtimov I, Ivanov R, Stanchev H (2019) Life cycle assessment of vehicles, using LPG and NG. BulTrans 48–58
143.
Zurück zum Zitat Evtimov I, Ivanov R, Kadikyanov G, Staneva G (2019) Life cycle assessment for compressed air and conventional cars concerning energy consumption and CO2 emissions. In: 58th science conference of Ruse University Evtimov I, Ivanov R, Kadikyanov G, Staneva G (2019) Life cycle assessment for compressed air and conventional cars concerning energy consumption and CO2 emissions. In: 58th science conference of Ruse University
144.
Zurück zum Zitat Padula AD et al (eds) (2014) Liquid biofuels: emergence development and prospects, Lecture Notes in Energy 27. Springer, London Padula AD et al (eds) (2014) Liquid biofuels: emergence development and prospects, Lecture Notes in Energy 27. Springer, London
Metadaten
Titel
Energy Efficiency and Ecological Impact of the Vehicles
verfasst von
Ivan Evtimov
Rosen Ivanov
Hristo Stanchev
Georgi Kadikyanov
Gergana Staneva
Milen Sapundzhiev
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-42323-0_4

    Premium Partner