Skip to main content

2011 | OriginalPaper | Buchkapitel

8. Energy Harvesting for Bio-sensing by Using Carbon Nanotubes

verfasst von : Koushik Maharatna, Karim El Shabrawy, Bashir Al-Hashimi

Erschienen in: Nano-Bio-Sensing

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we describe how single-wall carbon nanotubes (SWCNTs) can be used to develop a solar energy-based energy harvester to support various pervasive applications. To achieve this, we utilize the remarkable band-gap tunability property of SWCNTs that originates due to variations in its diameter and chirality during the synthesis process. After a brief introduction to the electronic property of CNT, we show how the band-gap tunability can be quantified through step-by-step theoretical analysis. Next, the resulting band-gap tunability is compared with the solar spectrum. Finally, a conceptual potentially high solar cell structure is described exploiting this band-gap tunability of SWCNT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat A. Triantafyllidis et al., “An Open and Reconfigurable Wireless Sensor Network for Pervasive Health Monitoring,” Methods Inf Med., vol. 47, pp. 229–234, 2008. A. Triantafyllidis et al., “An Open and Reconfigurable Wireless Sensor Network for Pervasive Health Monitoring,” Methods Inf Med., vol. 47, pp. 229–234, 2008.
3.
Zurück zum Zitat B. Banazwski, and R. K. Shah, “The Role of Fuel Cells for Consumer Electronic Products and Toys,” Proceedings of the 1st International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, USA, pp. 149–155, 2003. B. Banazwski, and R. K. Shah, “The Role of Fuel Cells for Consumer Electronic Products and Toys,” Proceedings of the 1st International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, USA, pp. 149–155, 2003.
4.
Zurück zum Zitat A. H. Epstein, “Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines,” J. Eng. Gas Turbines Power, vol. 126, pp. 205–226, 2004.CrossRef A. H. Epstein, “Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines,” J. Eng. Gas Turbines Power, vol. 126, pp. 205–226, 2004.CrossRef
5.
Zurück zum Zitat P. V. Kamat, “Harvesting Photons with Carbon Nanotubes,” Nanoday, vol. 1, No. 4, pp. 20–27, 2006. P. V. Kamat, “Harvesting Photons with Carbon Nanotubes,” Nanoday, vol. 1, No. 4, pp. 20–27, 2006.
6.
Zurück zum Zitat S. Tanaka, K.-S. Changa, K.-B. Mina, D. Satoh, K. Yoshida, and M. Esashi, “MEMS-based Components of a Miniature Fuel Cell/Fuel Reformer System,” J. Chem. Eng., vol. 101, pp. 143–149, 2004.CrossRef S. Tanaka, K.-S. Changa, K.-B. Mina, D. Satoh, K. Yoshida, and M. Esashi, “MEMS-based Components of a Miniature Fuel Cell/Fuel Reformer System,” J. Chem. Eng., vol. 101, pp. 143–149, 2004.CrossRef
7.
Zurück zum Zitat P. B. Koeneman, I. J. Busche-Vishniac, and K. L. Wood, “Feasibility of Micro Power Supplies for MEMS,” IEEE J. Microelectomech. Syst., vol. 6, pp. 355–362, 1997.CrossRef P. B. Koeneman, I. J. Busche-Vishniac, and K. L. Wood, “Feasibility of Micro Power Supplies for MEMS,” IEEE J. Microelectomech. Syst., vol. 6, pp. 355–362, 1997.CrossRef
8.
Zurück zum Zitat G. Görge, M. Kirstein, and R. Erbel, “Microgenerators for Energy Autarkic Pacemakers and Defibrillators: Fact or Fiction,” Herz, vol. 26, pp. 64–68, 2001. G. Görge, M. Kirstein, and R. Erbel, “Microgenerators for Energy Autarkic Pacemakers and Defibrillators: Fact or Fiction,” Herz, vol. 26, pp. 64–68, 2001.
9.
Zurück zum Zitat R. Amirtharajah, and A. P. Chandrakasan, “Self-powered Signal Processing Using Vibration-based Power Generation,” IEEE J. Solid-State Circuits, vol. 33, pp. 687–695, 1998.CrossRef R. Amirtharajah, and A. P. Chandrakasan, “Self-powered Signal Processing Using Vibration-based Power Generation,” IEEE J. Solid-State Circuits, vol. 33, pp. 687–695, 1998.CrossRef
10.
Zurück zum Zitat S. A. Jacobson, and A. H. Epstein, “An Informal Survey of Power MEMS,” Proceedings of the International Symposium on Micro-Mechanical Engineering ISMME (Japan), p. K18, 2003. S. A. Jacobson, and A. H. Epstein, “An Informal Survey of Power MEMS,” Proceedings of the International Symposium on Micro-Mechanical Engineering ISMME (Japan), p. K18, 2003.
11.
Zurück zum Zitat S. P. Beeby, M. J. Tudor, and N. M. White, “Energy Harvesting Vibration Sources for Microsystems Applications,” Meas. Sci. Technol., vol. 17, pp. R175–R195, 2006.CrossRef S. P. Beeby, M. J. Tudor, and N. M. White, “Energy Harvesting Vibration Sources for Microsystems Applications,” Meas. Sci. Technol., vol. 17, pp. R175–R195, 2006.CrossRef
14.
Zurück zum Zitat P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-Nanotube Photonics and Optoelectronics,” Nat. Photonics, vol. 2, pp. 341–350, 2008.CrossRef P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-Nanotube Photonics and Optoelectronics,” Nat. Photonics, vol. 2, pp. 341–350, 2008.CrossRef
15.
Zurück zum Zitat D. A. Stewart, F. Léonard, “Energy Conversion Efficiency in Nanotube Optoelectronics,” Nano Lett., vol. 5, pp. 219–222, 2005.CrossRef D. A. Stewart, F. Léonard, “Energy Conversion Efficiency in Nanotube Optoelectronics,” Nano Lett., vol. 5, pp. 219–222, 2005.CrossRef
16.
Zurück zum Zitat J. U. Lee, P. P. Gipp, and C. M. Heller, “Carbon Nanotube p-n Junction Diodes,” Appl. Phys. Lett., vol. 85, pp. 145–147, 2004.CrossRef J. U. Lee, P. P. Gipp, and C. M. Heller, “Carbon Nanotube p-n Junction Diodes,” Appl. Phys. Lett., vol. 85, pp. 145–147, 2004.CrossRef
17.
Zurück zum Zitat M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of Single Carbon Nanotubes,” Nano Lett., vol. 3, pp. 1067–1071, 2003.CrossRef M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of Single Carbon Nanotubes,” Nano Lett., vol. 3, pp. 1067–1071, 2003.CrossRef
18.
Zurück zum Zitat C. Chen, L. Yang, Y. Lu, G. Xiao, and Y. Zhang, “Assessment of Optical Absorption in Carbon Nanotube Photovoltaic Device by Electromagnetic Theory,” IEEE Trans. Nanotechnol., vol. 8, pp. 303–314, 2009.CrossRef C. Chen, L. Yang, Y. Lu, G. Xiao, and Y. Zhang, “Assessment of Optical Absorption in Carbon Nanotube Photovoltaic Device by Electromagnetic Theory,” IEEE Trans. Nanotechnol., vol. 8, pp. 303–314, 2009.CrossRef
19.
Zurück zum Zitat C. Chen, Y. Lu, E. S. Kong, Y. Zhang, and S. Lee, “Nanowelded Carbon-Nanotube-based Solar Microcells,” Small, vol. 4, pp. 1313–1318, 2008.CrossRef C. Chen, Y. Lu, E. S. Kong, Y. Zhang, and S. Lee, “Nanowelded Carbon-Nanotube-based Solar Microcells,” Small, vol. 4, pp. 1313–1318, 2008.CrossRef
20.
Zurück zum Zitat W. J. Blau, and J. Wang, “Optical Materials: Variety Pays off for Nanotubes,” Nat. Nanotechnol., vol. 3, pp. 705–706, 2008.CrossRef W. J. Blau, and J. Wang, “Optical Materials: Variety Pays off for Nanotubes,” Nat. Nanotechnol., vol. 3, pp. 705–706, 2008.CrossRef
22.
Zurück zum Zitat J. W. Mintmire, and C. T. White, “Electronic and Structural properties of Carbon Nanotubes,” Carbon, vol. 33, pp. 893–902, 1995.CrossRef J. W. Mintmire, and C. T. White, “Electronic and Structural properties of Carbon Nanotubes,” Carbon, vol. 33, pp. 893–902, 1995.CrossRef
23.
Zurück zum Zitat R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic Structure of Chiral Graphene Tubules,” Appl. Phys. Lett., vol. 60, pp. 2204–2206, 1992.CrossRef R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic Structure of Chiral Graphene Tubules,” Appl. Phys. Lett., vol. 60, pp. 2204–2206, 1992.CrossRef
24.
Zurück zum Zitat J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, vol. 391, pp. 59–62, 1998.CrossRef J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, vol. 391, pp. 59–62, 1998.CrossRef
25.
Zurück zum Zitat N. Hamada, S. Sawada, and A. Oshiyama, “New One-dimensional Conductors: Graphitic Microtubules,” Phys. Rev. Lett., vol. 68, pp. 1579–1581, 1992.CrossRef N. Hamada, S. Sawada, and A. Oshiyama, “New One-dimensional Conductors: Graphitic Microtubules,” Phys. Rev. Lett., vol. 68, pp. 1579–1581, 1992.CrossRef
26.
Zurück zum Zitat R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes. Imperial College Press, 1998. R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes. Imperial College Press, 1998.
27.
Zurück zum Zitat S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-binding Description of Graphene,” Phys. Rev. B, vol. 66, p. 035412, 2002.CrossRef S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-binding Description of Graphene,” Phys. Rev. B, vol. 66, p. 035412, 2002.CrossRef
28.
Zurück zum Zitat D. Kienle, J. I. Cerda, and A. W. Ghosh, “Extended Hückel Theory for Bandstructure, Chemistry and Transport: I. Carbon Nanotubes,” J. Appl. Phys., vol. 100, p. 043714, 2006.CrossRef D. Kienle, J. I. Cerda, and A. W. Ghosh, “Extended Hückel Theory for Bandstructure, Chemistry and Transport: I. Carbon Nanotubes,” J. Appl. Phys., vol. 100, p. 043714, 2006.CrossRef
29.
Zurück zum Zitat O. Gülseren, T. Yildirim, and S. Ciraci, “Systematic Ab Initio Study of Curvature Effects in Carbon Nanotubes,” Phys. Rev. B, vol. 65, p. 153405, 2002.CrossRef O. Gülseren, T. Yildirim, and S. Ciraci, “Systematic Ab Initio Study of Curvature Effects in Carbon Nanotubes,” Phys. Rev. B, vol. 65, p. 153405, 2002.CrossRef
30.
Zurück zum Zitat T. W. Odom, J. Huang, P. Kim, and C. M. Lieber, “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes,” Nature, vol. 391, pp. 62–64, 1998.CrossRef T. W. Odom, J. Huang, P. Kim, and C. M. Lieber, “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes,” Nature, vol. 391, pp. 62–64, 1998.CrossRef
31.
Zurück zum Zitat X. Liu, T. Pichler, M. Knupfer, M. S. Golden, J. Fink, H. Kataura, and Y. Achiba, “Detailed Analysis of the Mean Diameter and Diameter Distribution of Single-wall Carbon Nanotubes from Their Optical Response,” Phys. Rev. B, vol. 66, 2002. X. Liu, T. Pichler, M. Knupfer, M. S. Golden, J. Fink, H. Kataura, and Y. Achiba, “Detailed Analysis of the Mean Diameter and Diameter Distribution of Single-wall Carbon Nanotubes from Their Optical Response,” Phys. Rev. B, vol. 66, 2002.
32.
Zurück zum Zitat S. Reich, C. Thomsen, and P. Ordejon, “Electronic Band Structure of Isolated and Bundled Carbon Nanotubes,” Phys. Rev. B, vol. 65, p. 155411, 2002.CrossRef S. Reich, C. Thomsen, and P. Ordejon, “Electronic Band Structure of Isolated and Bundled Carbon Nanotubes,” Phys. Rev. B, vol. 65, p. 155411, 2002.CrossRef
33.
Zurück zum Zitat Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, and S. Iijima, “Chiral-Angle Distribution for Separated Single-Walled Carbon Nanotubes,” Nano Lett., vol. 8, pp. 3151–3154, 2008.CrossRef Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, and S. Iijima, “Chiral-Angle Distribution for Separated Single-Walled Carbon Nanotubes,” Nano Lett., vol. 8, pp. 3151–3154, 2008.CrossRef
34.
Zurück zum Zitat A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, and E. I. Kauppinen, “Correlation Between Catalyst Particle and Single-walled Carbon Nanotube Diameters,” Carbon, vol. 43, pp. 2251–2257, 2005.CrossRef A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, and E. I. Kauppinen, “Correlation Between Catalyst Particle and Single-walled Carbon Nanotube Diameters,” Carbon, vol. 43, pp. 2251–2257, 2005.CrossRef
35.
Zurück zum Zitat J. R. Hauptmann, “Spin-Transport in Carbon Nanotubes,” Faculty of Science, Master of Science, University of Copenhagen, 2003. J. R. Hauptmann, “Spin-Transport in Carbon Nanotubes,” Faculty of Science, Master of Science, University of Copenhagen, 2003.
37.
Zurück zum Zitat K. El Shabrawy, K. Maharatna, D. M. Bagnall, and B. M. Al-Hashimi, “A New Analytical Model for Predicting SWCNT Band-gap from Geometrical Properties,” ICICDT, Grenoble, France, 2008. K. El Shabrawy, K. Maharatna, D. M. Bagnall, and B. M. Al-Hashimi, “A New Analytical Model for Predicting SWCNT Band-gap from Geometrical Properties,” ICICDT, Grenoble, France, 2008.
38.
Zurück zum Zitat M. S. Dresselhaus, R. Saito, and A. Jorio, “Semiconducting Carbon Nanotubes,” International Conference on the Physics of Semiconductors – ICPS-27, pp. 25–31, 2005. M. S. Dresselhaus, R. Saito, and A. Jorio, “Semiconducting Carbon Nanotubes,” International Conference on the Physics of SemiconductorsICPS-27, pp. 25–31, 2005.
39.
Zurück zum Zitat J. W. Ding, X. H. Yan, and J. X. Cao, “Analytical Relation of Band Gaps to Both Chirality and Diameter of Single-wall Carbon Nanotubes,” Phys. Rev. B, vol. 66, p. 073401, 2002.CrossRef J. W. Ding, X. H. Yan, and J. X. Cao, “Analytical Relation of Band Gaps to Both Chirality and Diameter of Single-wall Carbon Nanotubes,” Phys. Rev. B, vol. 66, p. 073401, 2002.CrossRef
40.
Zurück zum Zitat C. L. Kane, and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. Lett., vol. 78, pp. 1932–1935, 1997.CrossRef C. L. Kane, and E. J. Mele, “Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes,” Phys. Rev. Lett., vol. 78, pp. 1932–1935, 1997.CrossRef
41.
Zurück zum Zitat T. Hiraoka, S. Bandow, H. Shinohara, and S. Iijima, “Control on the Diameter of Single-walled Carbon Nanotubes by Changing the Pressure in Floating Catalyst CVD,” Carbon, vol. 44, pp. 1853–1859, 2006.CrossRef T. Hiraoka, S. Bandow, H. Shinohara, and S. Iijima, “Control on the Diameter of Single-walled Carbon Nanotubes by Changing the Pressure in Floating Catalyst CVD,” Carbon, vol. 44, pp. 1853–1859, 2006.CrossRef
42.
Zurück zum Zitat C. Lu, and J. Liu, “Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon Feeding,” J. Phys. Chem. B, vol. 110, pp. 20254–20257, 2006.CrossRef C. Lu, and J. Liu, “Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon Feeding,” J. Phys. Chem. B, vol. 110, pp. 20254–20257, 2006.CrossRef
43.
Zurück zum Zitat C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, “Diameter-controlled Synthesis of Carbon Nanotubes,” J. Phys. Chem. B, vol. 106, pp. 2429–2433, 2002.CrossRef C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, “Diameter-controlled Synthesis of Carbon Nanotubes,” J. Phys. Chem. B, vol. 106, pp. 2429–2433, 2002.CrossRef
44.
Zurück zum Zitat A. Hazeghi, T. Krishnamohan, and H-S. P. Wong, “Schottky-Barrier Carbon Nanotube Field-effect Transistor Modeling,” IEEE Trans. Electron Devices, vol. 54, pp. 439–445, 2007.CrossRef A. Hazeghi, T. Krishnamohan, and H-S. P. Wong, “Schottky-Barrier Carbon Nanotube Field-effect Transistor Modeling,” IEEE Trans. Electron Devices, vol. 54, pp. 439–445, 2007.CrossRef
45.
Zurück zum Zitat O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, “Materials Science of Carbon Nanotubes: Fabrication, Integration, and Properties of Macroscopic Structures of Carbon Nanotubes,” Acc. Chem. Res., vol. 35, pp. 1045–1053, 2002.CrossRef O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, “Materials Science of Carbon Nanotubes: Fabrication, Integration, and Properties of Macroscopic Structures of Carbon Nanotubes,” Acc. Chem. Res., vol. 35, pp. 1045–1053, 2002.CrossRef
46.
Zurück zum Zitat C. Thomsen, S. Reich, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, 2004. C. Thomsen, S. Reich, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, 2004.
47.
Zurück zum Zitat E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical Approach to Optical Absorption in Carbon Nanotubes,” Phys. Rev. B (Condens. Matter Mater. Phy.), vol. 74, p. 195431, 2006. E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, “Analytical Approach to Optical Absorption in Carbon Nanotubes,” Phys. Rev. B (Condens. Matter Mater. Phy.), vol. 74, p. 195431, 2006.
48.
Zurück zum Zitat K. El-Shabrawy, K. Maharatna, and B. Al-Hashimi, “Exploiting SWCNT Structural Variability Towards the Development of a Photovoltaic Device,” Accepted in 12th International Symposium on Integrated Circuit, 14–16 December 2009. K. El-Shabrawy, K. Maharatna, and B. Al-Hashimi, “Exploiting SWCNT Structural Variability Towards the Development of a Photovoltaic Device,” Accepted in 12th International Symposium on Integrated Circuit, 14–16 December 2009.
49.
Zurück zum Zitat H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical Properties of Single-wall Carbon Nanotubes,” Synth. Met., vol. 103, pp. 2555–2558, 1999.CrossRef H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical Properties of Single-wall Carbon Nanotubes,” Synth. Met., vol. 103, pp. 2555–2558, 1999.CrossRef
50.
Zurück zum Zitat D. Chowdhary, and N. A. Kouklin, “dc Photoconduction Studies of Single-walled Carbon Nanotube Bundles,” Phys. Rev. B, vol. 76, p. 035416, 2007.CrossRef D. Chowdhary, and N. A. Kouklin, “dc Photoconduction Studies of Single-walled Carbon Nanotube Bundles,” Phys. Rev. B, vol. 76, p. 035416, 2007.CrossRef
51.
Zurück zum Zitat S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes,” Science, vol. 298, pp. 2361–2365, 2002.CrossRef S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes,” Science, vol. 298, pp. 2361–2365, 2002.CrossRef
53.
Zurück zum Zitat S. Kim, H. Lee, H. Tanaka, and P. S. Weiss, “Vertical Alignment of Single-Walled Carbon Nanotube Films Formed by Electrophoretic Deposition,” Langmuir, vol. 24, pp. 12936–12942, 2008.CrossRef S. Kim, H. Lee, H. Tanaka, and P. S. Weiss, “Vertical Alignment of Single-Walled Carbon Nanotube Films Formed by Electrophoretic Deposition,” Langmuir, vol. 24, pp. 12936–12942, 2008.CrossRef
54.
Zurück zum Zitat K. Mizunoa, J. Ishiib, H. Kishidac, Y. Hayamizua, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A Black Body Absorber from Vertically Aligned Single-walled Carbon Nanotubes,” PNAS, vol. 106, pp. 6044–6047, 2009.CrossRef K. Mizunoa, J. Ishiib, H. Kishidac, Y. Hayamizua, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A Black Body Absorber from Vertically Aligned Single-walled Carbon Nanotubes,” PNAS, vol. 106, pp. 6044–6047, 2009.CrossRef
Metadaten
Titel
Energy Harvesting for Bio-sensing by Using Carbon Nanotubes
verfasst von
Koushik Maharatna
Karim El Shabrawy
Bashir Al-Hashimi
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-6169-3_8

Neuer Inhalt