Skip to main content
Erschienen in: Quantum Information Processing 10/2017

01.10.2017

Enhancing the quantum state transfer between two atoms in separate cavities via weak measurement and its reversal

verfasst von: Yan-Ling Li, Jinsong Huang, Zhonghui Xu, Xing Xiao

Erschienen in: Quantum Information Processing | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Taking the advantage of weak measurement and quantum measurement reversal, we propose a scheme to enhance the fidelity of transferring quantum state from one atom trapped in cavity to another distant one trapped in another cavity which is coupled by an optical fiber. It is turned out that the fidelity can be greatly improved even when the system is under serious dissipation. Moreover, the scheme works in both the strong-coupling and weak-coupling regimes. It is also robust to the ratio of the coupling constant between the atoms and the cavity modes to the coupling constant between the fiber and cavity modes. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Lloyd, S.: A potentially realizable quantum computer. Science 261, 1569–1571 (1993)ADSCrossRef Lloyd, S.: A potentially realizable quantum computer. Science 261, 1569–1571 (1993)ADSCrossRef
3.
Zurück zum Zitat Cirac, J.I., Zoller, P., Kimble, H.J., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRef Cirac, J.I., Zoller, P., Kimble, H.J., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRef
4.
Zurück zum Zitat Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)ADSCrossRef Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)ADSCrossRef
5.
Zurück zum Zitat Chou, C.W., Laurat, J., Deng, H., Choi, K.S., et al.: Functional quantum nodes for entanglement distribution over scalable quantum network. Science 316, 1316–1320 (2007)ADSCrossRef Chou, C.W., Laurat, J., Deng, H., Choi, K.S., et al.: Functional quantum nodes for entanglement distribution over scalable quantum network. Science 316, 1316–1320 (2007)ADSCrossRef
6.
Zurück zum Zitat Boozer, A.D., Miller, R., Northup, T.E., Boca, A., Kimble, H.J.: Optical pumping via incoherent Raman transitions. Phys. Rev. A 76, 063401 (2007)ADSCrossRef Boozer, A.D., Miller, R., Northup, T.E., Boca, A., Kimble, H.J.: Optical pumping via incoherent Raman transitions. Phys. Rev. A 76, 063401 (2007)ADSCrossRef
7.
Zurück zum Zitat Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRef Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRef
8.
Zurück zum Zitat Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007)ADSMathSciNetCrossRef Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007)ADSMathSciNetCrossRef
9.
Zurück zum Zitat Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities. Phys. Rev. A 77, 014303 (2008)ADSCrossRef Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities. Phys. Rev. A 77, 014303 (2008)ADSCrossRef
10.
Zurück zum Zitat Lü, X.Y., Si, L.G., Hao, X.Y., Yang, X.X.: Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes. Phys. Rev. A 79, 052330 (2009)ADSCrossRef Lü, X.Y., Si, L.G., Hao, X.Y., Yang, X.X.: Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes. Phys. Rev. A 79, 052330 (2009)ADSCrossRef
11.
Zurück zum Zitat Zheng, S.B., Yang, Z.B., Xia, Y.: Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities. Phys. Rev. A 81, 015804 (2010)ADSCrossRef Zheng, S.B., Yang, Z.B., Xia, Y.: Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities. Phys. Rev. A 81, 015804 (2010)ADSCrossRef
12.
Zurück zum Zitat Li, Y.L., Fang, M.F., Xiao, X., Zeng, K., Wu, C.: Greenberger–Horne–Zeilinger state generation of three atoms trapped in two remote cavities. J. Phys. B At. Mol. Opt. Phys. 43, 085501 (2010)ADSCrossRef Li, Y.L., Fang, M.F., Xiao, X., Zeng, K., Wu, C.: Greenberger–Horne–Zeilinger state generation of three atoms trapped in two remote cavities. J. Phys. B At. Mol. Opt. Phys. 43, 085501 (2010)ADSCrossRef
13.
Zurück zum Zitat Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)ADSCrossRef Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)ADSCrossRef
14.
Zurück zum Zitat Li, W.A., Wei, L.F.: Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics. Opt. Express 20, 13440–13450 (2012)ADSCrossRef Li, W.A., Wei, L.F.: Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics. Opt. Express 20, 13440–13450 (2012)ADSCrossRef
15.
Zurück zum Zitat Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411–424 (2013)ADSMathSciNetCrossRefMATH Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411–424 (2013)ADSMathSciNetCrossRefMATH
16.
Zurück zum Zitat Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser Phys. Lett. 11, 115201 (2014)ADSCrossRef Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser Phys. Lett. 11, 115201 (2014)ADSCrossRef
17.
Zurück zum Zitat Shan, W.J., Xia, Y., Chen, Y.H., et al.: Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359–2376 (2016)ADSMathSciNetCrossRefMATH Shan, W.J., Xia, Y., Chen, Y.H., et al.: Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359–2376 (2016)ADSMathSciNetCrossRefMATH
18.
Zurück zum Zitat Zheng, S.B.: Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Appl. Phys. Lett. 94, 154101 (2009)ADSCrossRef Zheng, S.B.: Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Appl. Phys. Lett. 94, 154101 (2009)ADSCrossRef
19.
Zurück zum Zitat Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null-and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRef Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null-and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRef
20.
Zurück zum Zitat Li, Y.L., Fang, M.F., Xiao, X., Wu, C.: Implementation of a remote three-qubit controlled-Z gate for atoms separately trapped in cavities coupled by optical fibres. J. Phys. B At. Mol. Opt. Phys. 43, 165502 (2010)ADSCrossRef Li, Y.L., Fang, M.F., Xiao, X., Wu, C.: Implementation of a remote three-qubit controlled-Z gate for atoms separately trapped in cavities coupled by optical fibres. J. Phys. B At. Mol. Opt. Phys. 43, 165502 (2010)ADSCrossRef
21.
Zurück zum Zitat Shi, Z.C., Xia, Y., Song, J., Song, H.S.: One-step implementation of the Fredkin gate via quantum Zeno dynamics. Quantum Inf. Comput. 12, 215–230 (2012)MathSciNetMATH Shi, Z.C., Xia, Y., Song, J., Song, H.S.: One-step implementation of the Fredkin gate via quantum Zeno dynamics. Quantum Inf. Comput. 12, 215–230 (2012)MathSciNetMATH
22.
Zurück zum Zitat Zhang, S., Shao, X.Q., Chen, L., Zhao, Y.F., Yeon, K.H.: Robust gate on nitrogen-vacancy centres via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 44, 075505 (2011)ADSCrossRef Zhang, S., Shao, X.Q., Chen, L., Zhao, Y.F., Yeon, K.H.: Robust gate on nitrogen-vacancy centres via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 44, 075505 (2011)ADSCrossRef
23.
Zurück zum Zitat Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRef Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRef
24.
Zurück zum Zitat Zhou, Y.L., Wang, Y.M., Liang, L.M., Li, C.Z.: Quantum state transfer between distant nodes of a quantum network via adiabatic passage. Phys. Rev. A 79, 044304 (2009)ADSCrossRef Zhou, Y.L., Wang, Y.M., Liang, L.M., Li, C.Z.: Quantum state transfer between distant nodes of a quantum network via adiabatic passage. Phys. Rev. A 79, 044304 (2009)ADSCrossRef
25.
Zurück zum Zitat Shi, Z.C., Xia, Y., Song, J., et al.: Atomic quantum state transferring and swapping via quantum Zeno dynamics[J]. JOSA B 28, 2909–2914 (2011)ADSCrossRef Shi, Z.C., Xia, Y., Song, J., et al.: Atomic quantum state transferring and swapping via quantum Zeno dynamics[J]. JOSA B 28, 2909–2914 (2011)ADSCrossRef
26.
Zurück zum Zitat Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRef Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRef
27.
Zurück zum Zitat Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)ADSCrossRef Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)ADSCrossRef
28.
Zurück zum Zitat Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)CrossRef Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)CrossRef
29.
Zurück zum Zitat Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)ADSCrossRef Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)ADSCrossRef
30.
Zurück zum Zitat Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)ADSCrossRef Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)ADSCrossRef
31.
Zurück zum Zitat Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137–145 (2014)ADSMathSciNetCrossRefMATH Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137–145 (2014)ADSMathSciNetCrossRefMATH
32.
Zurück zum Zitat Yao, C., Ma, Z.H., Chen, Z.H., et al.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)ADSCrossRef Yao, C., Ma, Z.H., Chen, Z.H., et al.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)ADSCrossRef
33.
Zurück zum Zitat Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)ADSCrossRef Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)ADSCrossRef
34.
Zurück zum Zitat He, Z., Yao, C., Zou, J.: Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal. Phys. Rev. A 88, 044304 (2013)ADSCrossRef He, Z., Yao, C., Zou, J.: Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal. Phys. Rev. A 88, 044304 (2013)ADSCrossRef
35.
Zurück zum Zitat Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)ADSMathSciNetCrossRefMATH Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)ADSMathSciNetCrossRefMATH
36.
Zurück zum Zitat Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRef Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRef
37.
Zurück zum Zitat Sun, Q.Q., Al-Amri, M., Davidovich, L., et al.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRef Sun, Q.Q., Al-Amri, M., Davidovich, L., et al.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRef
38.
Zurück zum Zitat Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)ADSMathSciNetCrossRefMATH Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)ADSMathSciNetCrossRefMATH
39.
Zurück zum Zitat Xiao, X., Li, Y.L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRef Xiao, X., Li, Y.L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRef
40.
Zurück zum Zitat Katz, N., Neeley, M., Ansmann, M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRef Katz, N., Neeley, M., Ansmann, M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRef
41.
Zurück zum Zitat Kim, Y.S., Cho, Y.W., Ra, Y.S., et al.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)ADSCrossRef Kim, Y.S., Cho, Y.W., Ra, Y.S., et al.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)ADSCrossRef
42.
Zurück zum Zitat Li, Y.L., Yao, Y., Xiao, X.: Robust quantum state transfer between two superconducting qubits via partial measurement. Laser Phys. Lett. 13, 125202 (2016)ADSCrossRef Li, Y.L., Yao, Y., Xiao, X.: Robust quantum state transfer between two superconducting qubits via partial measurement. Laser Phys. Lett. 13, 125202 (2016)ADSCrossRef
43.
Zurück zum Zitat Sherman, J.A., Curtis, M.J., Szwer, D.J., et al.: Experimental recovery of a qubit from partial collapse. Phys. Rev. Lett. 111, 180501 (2013)ADSCrossRef Sherman, J.A., Curtis, M.J., Szwer, D.J., et al.: Experimental recovery of a qubit from partial collapse. Phys. Rev. Lett. 111, 180501 (2013)ADSCrossRef
44.
Zurück zum Zitat Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefMATH Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefMATH
45.
Zurück zum Zitat Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B Quantum Semiclass. Opt. 1, 424 (1999)ADSCrossRef Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B Quantum Semiclass. Opt. 1, 424 (1999)ADSCrossRef
Metadaten
Titel
Enhancing the quantum state transfer between two atoms in separate cavities via weak measurement and its reversal
verfasst von
Yan-Ling Li
Jinsong Huang
Zhonghui Xu
Xing Xiao
Publikationsdatum
01.10.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1706-8

Weitere Artikel der Ausgabe 10/2017

Quantum Information Processing 10/2017 Zur Ausgabe

Neuer Inhalt