Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Equilibrium Phase Transitions in Statistical Physics

verfasst von : Tian Ma, Shouhong Wang

Erschienen in: Phase Transition Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A principal objective in the study of equilibrium phase transitions is to capture the transitions from one equilibrium to another and to study the nature or order of such transitions. The study of equilibrium phase transitions presented in this book involves a combination of modeling, mathematical analysis, and physical predictions. First, the standard model for a thermodynamic system is derived using the recently discovered potential-descending principle (PDP), addressed in Chap. 7. Second, all equilibrium phase transitions are fully characterized by three basic theorems. Third, the dynamical law of fluctuations is derived, and we show that the standard model, together with the dynamic law of fluctuation, offers correct information for critical exponents. Fourth, the theory is applied to gas-liquid transitions, ferromagnetism, binary systems, superconductivity, and liquid heliums, leading to various physical predictions and insights to the underlying physical problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The linear operator \(L_\lambda =-\left (\frac {\partial ^2F(\overline u; \lambda )}{\partial u_i, \partial u_j}\right )\) is always self-adjoint, and all eigenvalues of L λ are real.
 
2
We used the classical Cahn–Hilliard modeling here for the conserved state function u; see (7.​1.​10) and the remark given there.
 
Literatur
Zurück zum Zitat Aftalion, A. and Q. Du (2002). The bifurcation diagrams for the Ginzburg-Landau system of superconductivity. Phys. D 163(1-2), 94–105.MathSciNetCrossRef Aftalion, A. and Q. Du (2002). The bifurcation diagrams for the Ginzburg-Landau system of superconductivity. Phys. D 163(1-2), 94–105.MathSciNetCrossRef
Zurück zum Zitat Bates, P. W. and P. C. Fife (1993). The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008.MathSciNetCrossRef Bates, P. W. and P. C. Fife (1993). The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008.MathSciNetCrossRef
Zurück zum Zitat Cahn, J. and J. E. Hillard (1957). Free energy of a nonuniform system i. interfacial energy. J. Chemical Physics 28, 258–267. Cahn, J. and J. E. Hillard (1957). Free energy of a nonuniform system i. interfacial energy. J. Chemical Physics 28, 258–267.
Zurück zum Zitat Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.MATH Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.MATH
Zurück zum Zitat de Gennes, P. (1966). Superconductivity of Metals and Alloys. W. A. Benjamin.MATH de Gennes, P. (1966). Superconductivity of Metals and Alloys. W. A. Benjamin.MATH
Zurück zum Zitat del Pino, M., P. L. Felmer, and P. Sternberg (2000). Boundary concentration for eigenvalue problems related to the onset of superconductivity. Comm. Math. Phys. 210(2), 413–446.MathSciNetCrossRef del Pino, M., P. L. Felmer, and P. Sternberg (2000). Boundary concentration for eigenvalue problems related to the onset of superconductivity. Comm. Math. Phys. 210(2), 413–446.MathSciNetCrossRef
Zurück zum Zitat Du, Q., M. D. Gunzburger, and J. S. Peterson (1992). Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34(1), 54–81.MathSciNetCrossRef Du, Q., M. D. Gunzburger, and J. S. Peterson (1992). Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34(1), 54–81.MathSciNetCrossRef
Zurück zum Zitat Ehrenfest, P. (1933). Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. NV Noord-Hollandsche Uitgevers Maatschappij. Ehrenfest, P. (1933). Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. NV Noord-Hollandsche Uitgevers Maatschappij.
Zurück zum Zitat Fisher, M. (1964). Specific heat of a gas near the critical point. Physical Review 136:6A, A1599–A1604.CrossRef Fisher, M. (1964). Specific heat of a gas near the critical point. Physical Review 136:6A, A1599–A1604.CrossRef
Zurück zum Zitat Ginzburg, V. L. (2004). On superconductivity and superfluidity (what i have and have not managed to do), as well as on the ’physical minimum’ at the beginning of the xxi century. Phys.-Usp. 47, 1155–1170.CrossRef Ginzburg, V. L. (2004). On superconductivity and superfluidity (what i have and have not managed to do), as well as on the ’physical minimum’ at the beginning of the xxi century. Phys.-Usp. 47, 1155–1170.CrossRef
Zurück zum Zitat Gor’kov, L. (1968). Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27, 328–334. Gor’kov, L. (1968). Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27, 328–334.
Zurück zum Zitat Kleman, M. and O. D. Laverntovich (2007). Soft matter physics: an introduction. Springer Science & Business Media. Kleman, M. and O. D. Laverntovich (2007). Soft matter physics: an introduction. Springer Science & Business Media.
Zurück zum Zitat Langer, J. (1971). Theory of spinodal decomposition in allays. Ann. of Physics 65, 53–86.CrossRef Langer, J. (1971). Theory of spinodal decomposition in allays. Ann. of Physics 65, 53–86.CrossRef
Zurück zum Zitat Liu, R., T. Ma, S. Wang, and J. Yang (2017a). Dynamic theory of fluctuations and critical exponents of thermodynamic phase transitions. hal-01674269. Liu, R., T. Ma, S. Wang, and J. Yang (2017a). Dynamic theory of fluctuations and critical exponents of thermodynamic phase transitions. hal-01674269.
Zurück zum Zitat Liu, R., T. Ma, S. Wang, and J. Yang (2019). Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B; see also hal-01632278(2017) 24, 1411. Liu, R., T. Ma, S. Wang, and J. Yang (2019). Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B; see also hal-01632278(2017) 24, 1411.
Zurück zum Zitat Ma, T., R. Liu, and J. Yang (2018). Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory (in Chinese). Science Press, Beijing. Ma, T., R. Liu, and J. Yang (2018). Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory (in Chinese). Science Press, Beijing.
Zurück zum Zitat Ma, T. and S. Wang (2005a). Bifurcation and stability of superconductivity. J. Math. Phys. 46(9), 095112, 31.MathSciNetCrossRef Ma, T. and S. Wang (2005a). Bifurcation and stability of superconductivity. J. Math. Phys. 46(9), 095112, 31.MathSciNetCrossRef
Zurück zum Zitat Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
Zurück zum Zitat Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.CrossRef Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.CrossRef
Zurück zum Zitat Ma, T. and S. Wang (2008a). Dynamic model and phase transitions for liquid helium. Journal of Mathematical Physics 49:073304, 1–18.MathSciNetMATH Ma, T. and S. Wang (2008a). Dynamic model and phase transitions for liquid helium. Journal of Mathematical Physics 49:073304, 1–18.MathSciNetMATH
Zurück zum Zitat Ma, T. and S. Wang (2008b). Dynamic phase transition theory in PVT systems. Indiana University Mathematics Journal 57:6, 2861–2889.MathSciNetCrossRef Ma, T. and S. Wang (2008b). Dynamic phase transition theory in PVT systems. Indiana University Mathematics Journal 57:6, 2861–2889.MathSciNetCrossRef
Zurück zum Zitat Ma, T. and S. Wang (2008c). Dynamic transitions for ferromagnetism. Journal of Mathematical Physics 49:053506, 1–18. Ma, T. and S. Wang (2008c). Dynamic transitions for ferromagnetism. Journal of Mathematical Physics 49:053506, 1–18.
Zurück zum Zitat Ma, T. and S. Wang (2008e). Superfluidity of helium-3. Physica A: Statistical Mechanics and its Applications 387:24, 6013–6031.CrossRef Ma, T. and S. Wang (2008e). Superfluidity of helium-3. Physica A: Statistical Mechanics and its Applications 387:24, 6013–6031.CrossRef
Zurück zum Zitat Ma, T. and S. Wang (2009b). Cahn-Hilliard equations and phase transition dynamics for binary systems. Dist. Cont. Dyn. Systs., Ser. B 11:3, 741–784. Ma, T. and S. Wang (2009b). Cahn-Hilliard equations and phase transition dynamics for binary systems. Dist. Cont. Dyn. Systs., Ser. B 11:3, 741–784.
Zurück zum Zitat Ma, T. and S. Wang (2009c). Phase separation of binary systems. Physica A: Statistical Physics and its Applications 388:23, 4811–4817.CrossRef Ma, T. and S. Wang (2009c). Phase separation of binary systems. Physica A: Statistical Physics and its Applications 388:23, 4811–4817.CrossRef
Zurück zum Zitat Ma, T. and S. Wang (2009d). Phase transition and separation for mixture of liquid he-3 and he-4, in lev davidovich landau and his impact on contemporary theoretical physics, horizons in world physics, edited by A. Sakaji and I. Licata. 264, 107–119. Ma, T. and S. Wang (2009d). Phase transition and separation for mixture of liquid he-3 and he-4, in lev davidovich landau and his impact on contemporary theoretical physics, horizons in world physics, edited by A. Sakaji and I. Licata. 264, 107–119.
Zurück zum Zitat Ma, T. and S. Wang (2011e). Third-order gas-liquid phase transition and the nature of Andrews critical point. AIP Advances 1, 042101.CrossRef Ma, T. and S. Wang (2011e). Third-order gas-liquid phase transition and the nature of Andrews critical point. AIP Advances 1, 042101.CrossRef
Zurück zum Zitat Ma, T. and S. Wang (2017a). Dynamic law of physical motion and potential-descending principle. J. Math. Study 50:3, 215–241; see also HAL preprint: hal--01558752. Ma, T. and S. Wang (2017a). Dynamic law of physical motion and potential-descending principle. J. Math. Study 50:3, 215–241; see also HAL preprint: hal--01558752.
Zurück zum Zitat Ma, T. and S. Wang (2017b). Dynamical theory of thermodynamic phase transitions. Hal preprint: hal-01568201. Ma, T. and S. Wang (2017b). Dynamical theory of thermodynamic phase transitions. Hal preprint: hal-01568201.
Zurück zum Zitat Ma, T. and S. Wang (2017e). Topological Phase Transitions I: Quantum Phase Transitions. Hal preprint: hal-01651908. Ma, T. and S. Wang (2017e). Topological Phase Transitions I: Quantum Phase Transitions. Hal preprint: hal-01651908.
Zurück zum Zitat Nishikawa, K. and T. Morita (1998). Fluid behavior at supercritical states studied by small-angle X-ray scattering. Journal of Supercritical Fluid 13, 143–148.CrossRef Nishikawa, K. and T. Morita (1998). Fluid behavior at supercritical states studied by small-angle X-ray scattering. Journal of Supercritical Fluid 13, 143–148.CrossRef
Zurück zum Zitat Novick-Cohen, A. and L. A. Segel (1984). Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10(3), 277–298.MathSciNetCrossRef Novick-Cohen, A. and L. A. Segel (1984). Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10(3), 277–298.MathSciNetCrossRef
Zurück zum Zitat Pismen, L. M. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer, Berlin.MATH Pismen, L. M. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer, Berlin.MATH
Zurück zum Zitat Reichl, L. E. (1998). A modern course in statistical physics (Second ed.). A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.MATH Reichl, L. E. (1998). A modern course in statistical physics (Second ed.). A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.MATH
Zurück zum Zitat Schmid, A. (1966). A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state. Phys. Kondens. Mater. 5, 302–317. Schmid, A. (1966). A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state. Phys. Kondens. Mater. 5, 302–317.
Zurück zum Zitat Shen, J. and X. Yang (2010). Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691.MathSciNetMATH Shen, J. and X. Yang (2010). Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691.MathSciNetMATH
Zurück zum Zitat Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York and Oxford. Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York and Oxford.
Zurück zum Zitat Tang, Q. and S. Wang (1995). Time dependent Ginzburg-Landau equations of superconductivity. Phys. D 88(3-4), 139–166.MathSciNetCrossRef Tang, Q. and S. Wang (1995). Time dependent Ginzburg-Landau equations of superconductivity. Phys. D 88(3-4), 139–166.MathSciNetCrossRef
Zurück zum Zitat Tinkham, M. (1996). Introduction to Superconductivity. McGraw-Hill, Inc. Tinkham, M. (1996). Introduction to Superconductivity. McGraw-Hill, Inc.
Metadaten
Titel
Equilibrium Phase Transitions in Statistical Physics
verfasst von
Tian Ma
Shouhong Wang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-29260-7_3

Premium Partner